3.Методы построения сечений многогранников.
Плоская фигура, полученная при пересечении любого многогранника плоскостью, представляет собой некоторый многоугольник. Вершины этого многоугольника находятся как точки пересечения ребер многогранника с секущей плоскостью, а стороны многоугольника строятся как линии пересечения граней многогранника с секущей плоскостью.
Существует три основных метода построения сечений многогранников: 1) Метод следов. (Суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют следом секущей плоскости. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения.) 2) Метод вспомогательных сечений (Этот метод построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь в виду, что построения, выполняемые при использовании этого метода, зачастую получаются «скученными». Тем не менее, в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.).
3) Комбинированный метод (Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с методом следов и методом вспомогательных сечений.).4) Координатный метод построения сечений. (Суть координатного метода заключается в вычислении координат точек пересечения ребер или многогранника с секущей плоскостью, которая задается уравнением плоскости. Уравнение плоскости сечения вычисляется на основе условий задачи.)
Первые два метода являются разновидностями Аксиоматического метода построения сечений. Можно также выделить следующие методы построения сечений многогранников: a)построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости; б)построение сечения, проходящего через заданную прямую параллельно другой заданной прямой; в)построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым; г)построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости; д)построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- Функциональные методы
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 2. Способ замены.
- 3. Разложение на множители.
- 4. Однородные тригонометрические уравнения вида
- 5. Универсальная замена.
- 16. Основные методы решения тригонометрических неравенств
- 17. Решение уравнений и неравенств, содержащих обратные тригонометрические функции
- 18. Метод интервалов при решении тригонометрических неравенств
- 19. Графики функций и уравнений. Основные преобразования графиков функций
- 1) Область определения функции и область значений функции.
- 3) Пересечение с осями коорд.
- 6) Точки экстремума
- 7) Периодическость функции.
- 21. Основные тригонометрические функции и их св-ва
- 22. Обратные тригонометрические функции, графики, свойства
- 24. Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 25. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 26. Методы решения уравнения . Методы решения неравенства
- 27. Обобщающий метод интервалов для решения неравенств
- Основные соотношения между элементами треугольника
- 2. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
- 4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
- 5. Метод площадей.
- 6.Теорема Чевы
- 7.Теорема Менелая
- 8. Теорема Пифагора. Обобщенная теорема Пифагора.
- 9.Метрические соотношения в окружности. Свойства хорд
- Свойства хорд
- 10. Свойства секущих и касательных к окружности.
- 11. Измерение углов, связанных с окружностью
- 12. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 14. Прямая Эйлера
- 15. Окружность Эйлера
- 16. Вневписанная окружность.
- 17. Основные виды четырехугольников, их св-ва и признаки
- 18. Вписанные четырехугольники. Вписанные многоугольники
- 19. Описанные четырехугольники. Описанные многоугольники
- 20. Теорема Пифагора для четырехугольников.
- 21. Теорема Птолемея.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 5.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Параллельность прямых и плоскостей в пространстве.Использование параллельности для построения сечений многогранников.