8. Теорема Пифагора. Обобщенная теорема Пифагора.
Т. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА. Пусть Т— прямоугольный треугольник с катетами а, b и гипотенузой с (рис. 6, а). Докажем, что с2=а2+b2.
Построим квадрат Q со стороной а+b (рис. 6, б). На сторонах квадрата Q возьмем точки А, В, С, D так, чтобы отрезки АВ, ВС, CD, DA отсекали от квадрата Q прямоугольные треугольники Т1, Т2, Т3, Т4 с катетами а и b. Четырехугольник ABCD обозначим буквой Р. Покажем, что Р – квадрат со стороной с.
Все треугольники Т1, Т2, Т3, Т4 равны треугольнику Т (по двум катетам). Поэтому их гипотенузы равны гипотенузе треугольника Т, т.е. отрезку с. Докажем, что все углы этого четырехугольника прямые.
Пусть a и b— величины острых углов треугольника Т. Тогда, как вам известно, a+b= 90°. Угол у при вершине А четырехугольника Р вместе с углами, равными a и b, составляет развернутый угол. Поэтому a+b=180°. И так как a+b= 90°, то g=90°. Точно так же доказывается, что и остальные углы четырехугольника Р прямые. Следовательно, четырехугольник Р — квадрат со стороной с.
Квадрат Q со стороной а+Ь слагается из квадрата Р со стороной с и четырех треугольников, равных треугольнику Т. Поэтому для их площадей выполняется равенство S(Q)=S(P)+4S(T) .
Так как S(Q)=(a+b) 2 ; S(P)=c2 и S(T)=1/2(ab), то, подставляя эти выражения в S(Q)=S(P)+4S(T), получаем равенство
(a+b) 2=c2+4*(1/2)ab . Поскольку (a+b)2=a2+b2+2ab, то равенство (a+b)2=c2+4*(1/2)ab можно записать так: a2+b2+2ab=c2+2ab.
Из равенства a2+b2+2ab=c2+2ab следует, что с2=а2+b2.
Теорема (обобщенная теорема Пифагора).
Пусть ABC - прямоугольный треугольник с гипотенузой AB. Рассмотрим какие-то три сходственных отрезка в треугольниках ABC, ACD и CBD (CD - высота в ABC). Обозначим их через lc, lb и la соответственно. Тогда справедливо равенство .
Доказательство. Как мы знаем, треугольники ABC, ACD и CBD (рис. 1) подобны. Согласно свойству подобных треугольников, любые два соответственных отрезка в них относятся одинаково.
Это означает, что (рис. 1). Обозначим каждую из дробей через k. Тогда lc=kc, lb = kb, la = ka. И если мы теперь в равенстве c2 = b2 + a2 умножим обе части почленно на k2, то получим .
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- Функциональные методы
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 2. Способ замены.
- 3. Разложение на множители.
- 4. Однородные тригонометрические уравнения вида
- 5. Универсальная замена.
- 16. Основные методы решения тригонометрических неравенств
- 17. Решение уравнений и неравенств, содержащих обратные тригонометрические функции
- 18. Метод интервалов при решении тригонометрических неравенств
- 19. Графики функций и уравнений. Основные преобразования графиков функций
- 1) Область определения функции и область значений функции.
- 3) Пересечение с осями коорд.
- 6) Точки экстремума
- 7) Периодическость функции.
- 21. Основные тригонометрические функции и их св-ва
- 22. Обратные тригонометрические функции, графики, свойства
- 24. Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 25. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 26. Методы решения уравнения . Методы решения неравенства
- 27. Обобщающий метод интервалов для решения неравенств
- Основные соотношения между элементами треугольника
- 2. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
- 4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
- 5. Метод площадей.
- 6.Теорема Чевы
- 7.Теорема Менелая
- 8. Теорема Пифагора. Обобщенная теорема Пифагора.
- 9.Метрические соотношения в окружности. Свойства хорд
- Свойства хорд
- 10. Свойства секущих и касательных к окружности.
- 11. Измерение углов, связанных с окружностью
- 12. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 14. Прямая Эйлера
- 15. Окружность Эйлера
- 16. Вневписанная окружность.
- 17. Основные виды четырехугольников, их св-ва и признаки
- 18. Вписанные четырехугольники. Вписанные многоугольники
- 19. Описанные четырехугольники. Описанные многоугольники
- 20. Теорема Пифагора для четырехугольников.
- 21. Теорема Птолемея.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 5.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Параллельность прямых и плоскостей в пространстве.Использование параллельности для построения сечений многогранников.