logo
PRZ_-_shpory

4. Однородные тригонометрические уравнения вида

a0(cos x)n + a1(cos x)n - 1sin x + ... + an - 1cos x(sin x)n - 1 + an(sin x)n = 0, n ∈ N, a0 ≠ 0.

Для его решения необходимо поделить уравнение на (sin x)n ≠ 0 (т.к. sin x, cos x одновременно не равны 0). После чего вводим замену ctg x = z и получаем алгебраическое уравнение

a0zn + a1zn - 1 + ... + an - 1z + an = 0, n ∈ N, a0 ≠ 0.