logo
PRZ_-_shpory

13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности

О кружностью называется фигура, состоящая из множества точек плоскости, расположенных на одинаковом расстоянии от некоторой точки О этой же плоскости, называемой центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности. Окружность называется описанной около треугольника, если она проходит через все его вершины.

Вокруг любого треугольника можно описать окружность, притом только одну. Её центром будет являться точка пересечения серединных перпендикуляров.

Доказательство. Пусть ABC – данный треугольник и O – центр окружности описанной около данного треугольника. Δ AOB – равнобедренный ( AO = OB как радиусы). Медиана OD этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину. Так же доказывается, что центр окружности на перпендикулярах к другим сторонам треугольника. Ч.т.д.

Докозательство 2способ

Пусть a и b – серединные перпендикуляры к сторонам AC и BC треугольника ABC, а точка O – точка их пересечения. Из свойств серединного перпендикуляра AO = OC = OB. Следовательно, точка O лежит на серединном перпендикуляре к стороне AB. Таким образом, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Кроме того, точка пересечения серединных перпендикуляров равноудалена от вершин треугольника. Отсюда, по определению, центром описанной окружности является точка пересечения серединных перпендикуляров к сторонам треугольника. Теорема доказана. Ч.т.д.

У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного— вне треугольника, у прямоугольного— на середине гипотенузы.

Остроугольный

Тупоугольный

Прямоугольный

3 из 4 окружностей, описанных относительно серединных треугольников (образованных средними линиями треугольника), пересекаются в одной точке внутри треугольника. Эта точка и есть центр описанной окружности основного треугольника.

Радиус описанной окружности может быть найден по формулам

Где: a,b,c — стороны треугольника, α — угол, лежащий против стороны a, S — площадь треугольника.