27. Обобщающий метод интервалов для решения неравенств
обобщённый метод интервалов
Данный способ наиболее универсален при решении неравенств практически любого типа. Схема решения выглядит следующим образом:
1. Привести неравенство к такому виду, где в левой части находится функция , а в правой 0.
2. Найти область определения функции
3. Найти нули функции , то есть – решить уравнение (а решать уравнение обычно проще, чем решать неравенство)
4. Изобразить на числовой прямой область определения и нули функции.
5. Определить знаки функции на полученных интервалах.
6. Выбрать интервалы, где функция принимает необходимые значения и записать ответ.
(В основе этого метода лежит следующее свойство двучлена (х – а): точка а делит числовую ось на две части — справа от точки а двучлен (х – а) положителен, а слева от точки а — отрицателен.
Пусть требуется решить неравенство
(х – а1)(х - a2) ...(x - an) >0, (1)
где а1, a2, …, an-1, an — фиксированные числа, среди которых нет равных, причем такие, что а1<а2<...<аn-1<аn
Рассмотрим многочлен
P(x) = (x-a1)(x-a2)...(x-an) (2)
Для любого числа х0 такого, что х0 > аn, соответствующее числовое значение любого сомножителя в произведении (2) положительно, а значит, Р(х0) > 0. Для любого числа x1, взятого из интервала (аn-1, an) соответствующее числовое значение любого из множителей, кроме множителя (x - an), положительное, поэтому число Р(х1) < 0 и т. д.
На этом рассуждении и основан метод интервалов, состоящий в следующем: на числовую ось наносят числа a1, а2, ..., аn; в промежутке справа от наибольшего из них, то есть числа an, ставят знак плюс, в следующем за ним справа налево интервале ставят знак минус, затем — знак плюс, затем — знак минус и т. д. Тогда множеством всех решений неравенства (1) будет объединение всех промежутков, в которых стоит знак плюс, а множеством решений неравенства
(х – а1)(х - a2) ...(x - an)<0, (3)
где а1 < а2 < ... < аn, будет объединение всех промежутков, в которых стоит знак минус.)
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- Функциональные методы
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 2. Способ замены.
- 3. Разложение на множители.
- 4. Однородные тригонометрические уравнения вида
- 5. Универсальная замена.
- 16. Основные методы решения тригонометрических неравенств
- 17. Решение уравнений и неравенств, содержащих обратные тригонометрические функции
- 18. Метод интервалов при решении тригонометрических неравенств
- 19. Графики функций и уравнений. Основные преобразования графиков функций
- 1) Область определения функции и область значений функции.
- 3) Пересечение с осями коорд.
- 6) Точки экстремума
- 7) Периодическость функции.
- 21. Основные тригонометрические функции и их св-ва
- 22. Обратные тригонометрические функции, графики, свойства
- 24. Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 25. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 26. Методы решения уравнения . Методы решения неравенства
- 27. Обобщающий метод интервалов для решения неравенств
- Основные соотношения между элементами треугольника
- 2. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
- 4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
- 5. Метод площадей.
- 6.Теорема Чевы
- 7.Теорема Менелая
- 8. Теорема Пифагора. Обобщенная теорема Пифагора.
- 9.Метрические соотношения в окружности. Свойства хорд
- Свойства хорд
- 10. Свойства секущих и касательных к окружности.
- 11. Измерение углов, связанных с окружностью
- 12. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 14. Прямая Эйлера
- 15. Окружность Эйлера
- 16. Вневписанная окружность.
- 17. Основные виды четырехугольников, их св-ва и признаки
- 18. Вписанные четырехугольники. Вписанные многоугольники
- 19. Описанные четырехугольники. Описанные многоугольники
- 20. Теорема Пифагора для четырехугольников.
- 21. Теорема Птолемея.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 5.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Параллельность прямых и плоскостей в пространстве.Использование параллельности для построения сечений многогранников.