1. Понятие двумерной (n-мерной) случайные величины
Ранее мы познакомились со случайными величинами и законами их распределения. Мы рассматривали одномерные случайные величины, которые были разбиты на два большие класса: дискретные и непрерывные.
Дискретная случайная величина считается заданной, если перечислены все её значения Хi и указаны соответствующие вероятности Рi, причём, сумма всех вероятностей равна 1, т.е.
Р1 + … + Рi + … + Рn = 1.
Непрерывная случайная величина считается заданной, если известна функция (интегральная функция) её распределения
F(x) = P(X < x),
или плотность распределения её вероятностей, получаемая дифференцированием функции распределения, т.е.
(х) = (х).
Если известна плотность распределения вероятностей непрерывной случайной величины, то интегральная функция её распределения вычисляется по формуле:
F(x) = .
В реальном мире изучаемое явление характеризуется не одной, а несколькими случайными величинами. Такие случайные величины называют многомерными случайными величинами. Приведём примеры таких величин.
Пример 1. Объём продаж квартир на вторичном рынке зависит от многих фактором, а именно, от числа комнат Х1 в квартире, района города Х2, типа дома Х3 и др.
Пример 2. Качество обслуживания судов в порту зависит от количества Х1 прибывших в порт судов, имеющихся в порту свободных причалов Х2 и т. д.
Пример 3. Доход инвестора зависит от инвестиционной привлекательности Х1 ценных бумаг и вложенных в них денежных средств Х2.
Как видим, многомерные случайные величины характеризуются системой одномерных случайных величин или случайным вектором Х = (Х1, …, Хi, …, Xn).
Случайные величины (Х1, …, Хi, …, Xn), входящие в систему, могут быть как дискретными (примеры 1 и 2), так и непрерывными (пример 3).
Непрерывные многомерные случайные величины преобразуют в дискретные по тем же правилам, что и для одномерных непрерывных случайных величин.
Изучение многомерных случайных величин проще начать с рассмотрения двумерных случайных величин, так как все полученные выводы легко распространяются на любую систему случайных величин.
Геометрически двумерную случайную величину (Х, У) можно изобразить случайной точкой (вектором) на плоскости.
Исчерпывающим описанием многомерной случайной величины, как и в случае с обычной одномерной случайной величиной, является закон её распределения. Закон распределения дискретной многомерной случайной величины, как и в случае обычной одномерной случайной величины, считается заданным, если перечислены совокупности всех её возможных значений (точек плоскости для двумерной случайной величины) и указаны соответствующие им вероятности.
В общем виде закон распределения двумерной дискретной случайной величины запишем в виде таблицы (матрицы) распределения (таблица 1), в каждой клетке (i,j) которой располагаются вероятности совместного появления соответствующих значений (Xi, Yj), т.е. Pij = Р(Х= Xi; У= Yj).
Таблица 1.
Y j
Xi |
Y1 |
… |
Yj |
… |
Ym |
|
Р1 | P11 | … | P1j | … | P1m | P1 |
… | … | … | … | … | … | … |
Xi | Pi1 | … | Pij | … | Pim | Pi |
… | … | … | … | … | … | … |
Xn | Pn1 | … | Pnj | … | Pnm | Pn |
| P1 | … | Pj | … | Pm | 1 |
Так как в клетках (i,j) таблицы стоят значения (Xi, Yj), представляющих полную группу событий, то сумма их вероятностей равна единице, т.е.
= 1
Итоговые строки или столбцы таблицы представляют собой законы распределения соответствующих одномерных случайных величин.
Действительно, распределение одномерной случайной величины Х можно получить, вычислив вероятности событий Х= Xi (i = 1,2, …,n) как сумму вероятностей несовместных событий, рассматривая первый и последний столбцы таблиц в качестве закона распределения:
Pi = Р(Х= Xi) = Р[(Х= Xi)(У=У1)+…+(Х= Xi)(У=Yj)+…+ (Х= Xi)(У= Ym)] =
= Pi1 + …+ Pij +…+ Pim = .
- Тема 1: Случайные события. Классификация событий
- 2. Классическое определение вероятности. Свойства вероятности события
- 3. Статистическое определение вероятности события и условия его применимости
- Лекция 2 Тема 2: Основные теоремы
- 1. Сумма событий. Теорема сложения вероятностей и её следствия
- 2. Зависимые и независимые события. Произведение событий. Условная вероятность. Теорема умножения вероятностей
- 3. Формула полной вероятности. Формула Байеса
- Лекция 3 Тема 3: Повторные независимые испытания Тема 4: Дискретные случайные величины
- 1. Повторные независимые испытания. Формула Бернулли
- 2. Асимптотическая формула Пуассона и условия ее применимости
- 3. Локальная теорема Муавра-Лапласа и условия ее применимости
- 4. Интегральная теорема Муавра-Лапласа, её следствия и условия их применимости
- 5. Понятие случайной величины и ее описание. Дискретная случайная величина и ее закон (ряд) распределения.
- Лекция 4 Тема 4: Дискретные случайные величины
- 1. Математические операции над дискретными случайными величинами
- 2. Математическое ожидание, дисперсия и среднее квадратическое отклонение дискретной случайной величины, их свойства
- 3. Математическое ожидание и дисперсия числа m и частости m/n наступлений события в п повторных независимых испытаниях
- 4. Биномиальный закон распределения и закон Пуассона
- Лекция 5 Тема 5: Непрерывные случайные величины. Нормальный закон распределения
- 1. Функция распределения случайной величины, ее свойства и график
- 2. Непрерывная случайная величина (нсв). Плотность вероятности нсв, ее определение и свойства
- 3. Равномерный (прямоугольный) закон распределения и его числовые характеристики.
- Лекция 6 Тема 5: Непрерывные случайные величины. Нормальный закон распределения
- 1. Нормальный закон распределения
- 2. Формулы для определения вероятностей: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило трех сигм
- 3. Центральная предельная теорема. Понятие о теореме Ляпунова
- Лекция 7 Тема 6: Двумерные (n-мерные) случайные величины
- 1. Понятие двумерной (n-мерной) случайные величины
- 2. Условные распределения и их нахождение по таблице распределения
- 3. Понятие о функции распределения и плотности вероятности двумерной случайной величины
- 4. Ковариация и коэффициент корреляции
- Лекция 8 Тема 6: Двумерные (n-мерные) случайные величины Тема 7: Закон больших чисел
- 1. Двумерное нормальное распределение. Условное математическое ожидание и условная дисперсия
- 2. Лемма Чебышева (неравенство Маркова) Неравенство Чебышева и его частные случаи для случайной величины, распределенной по биномиальному закону, и для частости события
- 3. Неравенство Чебышева для средней арифметической случайных величин. Теорема Чебышева и ее значение
- 4. Закон больших чисел. Теорема Бернулли и ее практическое значение
- Лекция 9 Тема 8. Выборочный метод. Общие вопросы
- 1. Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда
- 2. Генеральная и выборочная совокупности. Основная задача выборочного метода
- 3. Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность
- Лекция 10 Тема 9: Оценка доли признака и генеральной средней
- 1. Оценка генеральной доли и генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность оценок
- 2. Оценка генеральной средней по собственно-случайной выборке
- 2. Оценка генеральной дисперсии по собственно-случайной выборке. Исправленная выборочная дисперсия
- 3. Понятие доверительного интервала и доверительной вероятности оценки
- 4. Средняя квадратическая ошибка выборки при оценке генеральной доли и генеральной средней
- 5. Определение необходимого объема повторной и бесповторной выборок
- Лекция 11 Тема 10: Элементы статистической проверки гипотез
- 1. Статистическая гипотеза и статистический критерий
- 2. Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия
- 3. Критерий согласия 2 Пирсона и схема его применения
- Лекция 12 Тема 11: Элементы теории корреляции
- 1. Функциональная, статистическая и корреляционная зависимости. Основные задачи теории корреляции
- 2. Линейная корреляция. Уравнения прямых регрессии для парной корреляции
- 3. Оценка тесноты связи. Коэффициент корреляции (выборочный), его определение и свойства
- 4. Коэффициент детерминации и корреляционное отношение.
- 5. Проверка значимости уравнения регрессии