Тема 1: Случайные события. Классификация событий
ПЛАН
1. Классификация случайных событий.
2. Классическое определение вероятности Свойства вероятности события.
3. Статистическое определение вероятности и условия его применимости.
1. Классификация случайных событий
Одним из основных понятий теории вероятностей является понятие события. Случайным событием (возможным событием или просто событием) называется любой факт, который в результате испытания может произойти или не произойти.
Под испытанием (опытом, экспериментом) в этом определении понимается выполнение определенного комплекса условий, в которых наблюдается то или иное явление, фиксируется тот или иной результат.
Испытание может быть осуществлено человеком, но может проводиться и независимо от человека, выступающего в этом случае в роли наблюдателя.
Событие – это не какое-нибудь происшествие, а лишь возможный исход, результат испытания (опыта, эксперимента).
События обозначаются заглавными буквами латинского алфавита: A, B, C и т.д.
Два события называются несовместимыми (несовместными), если наступление одного из них исключает наступление другого. В противном случае события называются совместимыми (совместными).
Событие называется достоверным, если в результате испытания оно обязательно должно произойти.
Событие называется невозможным, если в результате испытания оно вообще не может произойти.
События называются равновозможными, если в результате испытания по условиям симметрии ни одно из этих событий не является объективно более возможным.
Несколько событий называются единственно возможными, если в результате испытания обязательно должно произойти хотя бы одно из них.
Несколько событий образуют полную группу событий (полную систему), если они являются единственно возможными и несовместимыми исходами испытания. Это означает, что в результате испытания обязательно должно произойти одно и только одно из этих событий.
Частным случаем событий, образующих полную группу, являются противоположные события.
Два несовместимых события, одно из которых обязательно должно произойти, называются противоположными.
Событие, противоположное событию A, будем обозначать .
- Тема 1: Случайные события. Классификация событий
- 2. Классическое определение вероятности. Свойства вероятности события
- 3. Статистическое определение вероятности события и условия его применимости
- Лекция 2 Тема 2: Основные теоремы
- 1. Сумма событий. Теорема сложения вероятностей и её следствия
- 2. Зависимые и независимые события. Произведение событий. Условная вероятность. Теорема умножения вероятностей
- 3. Формула полной вероятности. Формула Байеса
- Лекция 3 Тема 3: Повторные независимые испытания Тема 4: Дискретные случайные величины
- 1. Повторные независимые испытания. Формула Бернулли
- 2. Асимптотическая формула Пуассона и условия ее применимости
- 3. Локальная теорема Муавра-Лапласа и условия ее применимости
- 4. Интегральная теорема Муавра-Лапласа, её следствия и условия их применимости
- 5. Понятие случайной величины и ее описание. Дискретная случайная величина и ее закон (ряд) распределения.
- Лекция 4 Тема 4: Дискретные случайные величины
- 1. Математические операции над дискретными случайными величинами
- 2. Математическое ожидание, дисперсия и среднее квадратическое отклонение дискретной случайной величины, их свойства
- 3. Математическое ожидание и дисперсия числа m и частости m/n наступлений события в п повторных независимых испытаниях
- 4. Биномиальный закон распределения и закон Пуассона
- Лекция 5 Тема 5: Непрерывные случайные величины. Нормальный закон распределения
- 1. Функция распределения случайной величины, ее свойства и график
- 2. Непрерывная случайная величина (нсв). Плотность вероятности нсв, ее определение и свойства
- 3. Равномерный (прямоугольный) закон распределения и его числовые характеристики.
- Лекция 6 Тема 5: Непрерывные случайные величины. Нормальный закон распределения
- 1. Нормальный закон распределения
- 2. Формулы для определения вероятностей: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило трех сигм
- 3. Центральная предельная теорема. Понятие о теореме Ляпунова
- Лекция 7 Тема 6: Двумерные (n-мерные) случайные величины
- 1. Понятие двумерной (n-мерной) случайные величины
- 2. Условные распределения и их нахождение по таблице распределения
- 3. Понятие о функции распределения и плотности вероятности двумерной случайной величины
- 4. Ковариация и коэффициент корреляции
- Лекция 8 Тема 6: Двумерные (n-мерные) случайные величины Тема 7: Закон больших чисел
- 1. Двумерное нормальное распределение. Условное математическое ожидание и условная дисперсия
- 2. Лемма Чебышева (неравенство Маркова) Неравенство Чебышева и его частные случаи для случайной величины, распределенной по биномиальному закону, и для частости события
- 3. Неравенство Чебышева для средней арифметической случайных величин. Теорема Чебышева и ее значение
- 4. Закон больших чисел. Теорема Бернулли и ее практическое значение
- Лекция 9 Тема 8. Выборочный метод. Общие вопросы
- 1. Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда
- 2. Генеральная и выборочная совокупности. Основная задача выборочного метода
- 3. Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность
- Лекция 10 Тема 9: Оценка доли признака и генеральной средней
- 1. Оценка генеральной доли и генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность оценок
- 2. Оценка генеральной средней по собственно-случайной выборке
- 2. Оценка генеральной дисперсии по собственно-случайной выборке. Исправленная выборочная дисперсия
- 3. Понятие доверительного интервала и доверительной вероятности оценки
- 4. Средняя квадратическая ошибка выборки при оценке генеральной доли и генеральной средней
- 5. Определение необходимого объема повторной и бесповторной выборок
- Лекция 11 Тема 10: Элементы статистической проверки гипотез
- 1. Статистическая гипотеза и статистический критерий
- 2. Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия
- 3. Критерий согласия 2 Пирсона и схема его применения
- Лекция 12 Тема 11: Элементы теории корреляции
- 1. Функциональная, статистическая и корреляционная зависимости. Основные задачи теории корреляции
- 2. Линейная корреляция. Уравнения прямых регрессии для парной корреляции
- 3. Оценка тесноты связи. Коэффициент корреляции (выборочный), его определение и свойства
- 4. Коэффициент детерминации и корреляционное отношение.
- 5. Проверка значимости уравнения регрессии