1. Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда
Определение 1. Вариационным рядом называется ранжированный в порядке возрастания или убывания ряд вариантов с соответствующими им весами (частотами или частостями). При этом вариантами называются различные значения случайной величины Х.
Вариационный ряд называется дискретным, если любые его варианты отличаются на постоянную величину.
Вариационный ряд называется непрерывным (интервальным), если варианты могут отличаться один от другого на сколь угодно малую величину.
Числа, показывающие, сколько раз встречаются варианты из данного интервала, называются частотами, а их отношения к общему числу наблюдений – частостями (или относительными частотами).
Определение 2. Эмпирической функцией распределения Fn(x) называется относительная частота (частость) того, что случайная величина Х примет значение, меньшее заданного х, т.е. .
Накопленная частота показывает, сколько раз наблюдались варианты со значениями случайной величины, меньшими х.
Отношение накопленной частоты к общему числу наблюдений называется накопленной частостью.
Определение 3. Средней арифметической вариационного ряда называется сумма произведений всех вариантов на соответствующие частоты, деленная на сумму частот:
,
где xi варианты дискретного ряда или середины интервалов интервального вариационного ряда ; ni – соответствующие им частоты; .
Свойства средней арифметической:
Средняя арифметическая постоянной равна самой постоянной.
M(C)=C.
Если все варианты увеличить (уменьшить) в одно и то же число раз, то средняя арифметическая увеличиться (уменьшиться) во столько же раз:
.
Если все варианты увеличить (уменьшить) на одно и то же число, то средняя арифметическая увеличиться (уменьшиться) на же число:
.
Средняя арифметическая отклонений вариантов от средней арифметической равна нулю:
.
Средняя арифметическая алгебраической суммы нескольких признаков равна такой же сумме средних арифметических этих признаков:
.
Только средняя арифметическая не может в достаточной степени характеризовать вариационный ряд. Она не характеризует степень изменчивости значений признака.
Определение 4. Дисперсией s2 вариационного ряда называется средняя арифметическая квадратов отклонений вариантов от их средней арифметической:
.
Дисперсию s2 часто называют эмпирической или выборочной, отмечая, что она находится по опытным или статистическим данным.
Определение 5. Средним квадратическим отклонением s вариационного ряда называется арифметический квадратный корень из ее дисперсии:
.
Свойства дисперсии случайной величины :
Дисперсия постоянной равна нулю.
Если все варианты увеличить (уменьшить) в одно и то же число k раз, то дисперсия увеличиться (уменьшиться) в k2 раз:
.
Если все варианты увеличить (уменьшить) на одно и то же число, то дисперсия не изменится:
.
Дисперсия равна разности между средней арифметической квадратов вариантов и квадратом средней арифметической:
.
Если вариационный ряд состоит из нескольких групп наблюдений, то общая дисперсия равна сумме средней арифметической групповых дисперсий и межгрупповой дисперсии:
, где
; ; .
Формула свойства 5 известна в статистике как правило сложения дисперсий.
Вычисление средней арифметической и дисперсии вариационного ряда можно упростить, используя следующие формулы:
; ,
где ui определяются по формулам: .
Эти формулы значительно упрощают расчеты, если в качестве постоянной k взять величину интервала по х, а в качестве с – середину серединного интервала (если серединных интервалов два, то середину любого из этих интервалов).
Замечание. Вариационный ряд является статистическим аналогом (реализацией) распределения признака (случайной величины), а его числовые характеристики – средняя арифметическая и дисперсия s2 – аналогами соответствующих числовых характеристик случайной величины – математического ожидания М(Х) и дисперсии 2. Точно так же понятие частости (относительной частоты) для вариационного ряда аналогично понятию вероятности для случайной величины.
Необходимо четко знать формулы вычисления числовых характеристик ряда. Более сложные формулы, используемые в упрощенном способе расчета, являются вспомогательными, и их сложность объясняется переходом в расчетах от рассматриваемых вариантов к условным.
- Тема 1: Случайные события. Классификация событий
- 2. Классическое определение вероятности. Свойства вероятности события
- 3. Статистическое определение вероятности события и условия его применимости
- Лекция 2 Тема 2: Основные теоремы
- 1. Сумма событий. Теорема сложения вероятностей и её следствия
- 2. Зависимые и независимые события. Произведение событий. Условная вероятность. Теорема умножения вероятностей
- 3. Формула полной вероятности. Формула Байеса
- Лекция 3 Тема 3: Повторные независимые испытания Тема 4: Дискретные случайные величины
- 1. Повторные независимые испытания. Формула Бернулли
- 2. Асимптотическая формула Пуассона и условия ее применимости
- 3. Локальная теорема Муавра-Лапласа и условия ее применимости
- 4. Интегральная теорема Муавра-Лапласа, её следствия и условия их применимости
- 5. Понятие случайной величины и ее описание. Дискретная случайная величина и ее закон (ряд) распределения.
- Лекция 4 Тема 4: Дискретные случайные величины
- 1. Математические операции над дискретными случайными величинами
- 2. Математическое ожидание, дисперсия и среднее квадратическое отклонение дискретной случайной величины, их свойства
- 3. Математическое ожидание и дисперсия числа m и частости m/n наступлений события в п повторных независимых испытаниях
- 4. Биномиальный закон распределения и закон Пуассона
- Лекция 5 Тема 5: Непрерывные случайные величины. Нормальный закон распределения
- 1. Функция распределения случайной величины, ее свойства и график
- 2. Непрерывная случайная величина (нсв). Плотность вероятности нсв, ее определение и свойства
- 3. Равномерный (прямоугольный) закон распределения и его числовые характеристики.
- Лекция 6 Тема 5: Непрерывные случайные величины. Нормальный закон распределения
- 1. Нормальный закон распределения
- 2. Формулы для определения вероятностей: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило трех сигм
- 3. Центральная предельная теорема. Понятие о теореме Ляпунова
- Лекция 7 Тема 6: Двумерные (n-мерные) случайные величины
- 1. Понятие двумерной (n-мерной) случайные величины
- 2. Условные распределения и их нахождение по таблице распределения
- 3. Понятие о функции распределения и плотности вероятности двумерной случайной величины
- 4. Ковариация и коэффициент корреляции
- Лекция 8 Тема 6: Двумерные (n-мерные) случайные величины Тема 7: Закон больших чисел
- 1. Двумерное нормальное распределение. Условное математическое ожидание и условная дисперсия
- 2. Лемма Чебышева (неравенство Маркова) Неравенство Чебышева и его частные случаи для случайной величины, распределенной по биномиальному закону, и для частости события
- 3. Неравенство Чебышева для средней арифметической случайных величин. Теорема Чебышева и ее значение
- 4. Закон больших чисел. Теорема Бернулли и ее практическое значение
- Лекция 9 Тема 8. Выборочный метод. Общие вопросы
- 1. Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда
- 2. Генеральная и выборочная совокупности. Основная задача выборочного метода
- 3. Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность
- Лекция 10 Тема 9: Оценка доли признака и генеральной средней
- 1. Оценка генеральной доли и генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность оценок
- 2. Оценка генеральной средней по собственно-случайной выборке
- 2. Оценка генеральной дисперсии по собственно-случайной выборке. Исправленная выборочная дисперсия
- 3. Понятие доверительного интервала и доверительной вероятности оценки
- 4. Средняя квадратическая ошибка выборки при оценке генеральной доли и генеральной средней
- 5. Определение необходимого объема повторной и бесповторной выборок
- Лекция 11 Тема 10: Элементы статистической проверки гипотез
- 1. Статистическая гипотеза и статистический критерий
- 2. Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия
- 3. Критерий согласия 2 Пирсона и схема его применения
- Лекция 12 Тема 11: Элементы теории корреляции
- 1. Функциональная, статистическая и корреляционная зависимости. Основные задачи теории корреляции
- 2. Линейная корреляция. Уравнения прямых регрессии для парной корреляции
- 3. Оценка тесноты связи. Коэффициент корреляции (выборочный), его определение и свойства
- 4. Коэффициент детерминации и корреляционное отношение.
- 5. Проверка значимости уравнения регрессии