4. Коэффициент детерминации и корреляционное отношение.
Согласно основной идее дисперсионного анализа
,
где - групповая средняя для i-го уровня фактора.
Последнее равенство запишем в виде:
Q = QR + Qe ,
где Q – общая сумма квадратов отклонений зависимой переменной от средней, QR – сумма квадратов, обусловленная регрессией, а Qe - остаточная сумма квадратов, характеризующая влияние неучтенных факторов.
Схему дисперсионного анализа представим в виде таблицы:
Компоненты дисперсии | Сумма квадратов | Число степеней свободы | Средние квадраты |
Регрессия | QR= | m-1 |
|
Остаточная | Qe= | mn-m |
|
Общая | Q= | mn-1 |
|
Часто возникает необходимость в достоверном показателе интенсивности связи при любой форме зависимости. Для получения такого показателя запишем правило сложения дисперсий:
sy2 = siy/ 2 + δiy 2,
где sy2 – общая дисперсия переменной y, siy/ 2 – средняя групповых дисперсий siy2 или остаточная дисперсия и δiy 2 – межгрупповая дисперсия. Остаточная диспесия измеряет ту часть колеблемости Y, которая возникает из-за изменчивости неучтенных факторов, не зависящих от Х. Межгрупповая дисперсия выражает ту часть вариации Y, которая обусловлена изменчивостью Х.
Величина называется эмпирическим корреляционным отношением Y по Х. Чем теснее связь, тем большее влияние на вариацию переменной Y оказывает изменчивость Х по сравнению с неучтенными факторами, тем выше ηух. Величина ηух2 , называемая эмпирическим коэффициентом детерминации, показывает, какая часть общей вариации Y обусловлена вариацией Х. Аналогично вводится эмпирическое корреляционное отношение Х по Y.
Основные свойства корреляционных отношений:
1. Корреляционное отношение есть неотрицательная величина, не превосходящая 1: 0 ≤ η ≤ 1.
2. Если η = 0, то корреляционная связь отсутствует.
3. Если η = 1, то между переменными существует функциональная зависимость.
Эмпирическое корреляционное отношение ηух является показателем рассеяния точек корреляционного поля относительно эмпирической линии регрессии, которое преувеличивает тесноту связи. Поэтому рассматривается показатель тесноты связи Ryx, характеризующий рассеяние точек корреляционного поля относительно линии регрессии ух. Показатель Ryx получил название теоретического корреляционного отношения или индекса корреляции Y по Х:
.
Можно показать, что Ryx = .
Коэффициент детерминации R2, равный квадрату индекса корреляции, показывает долю общей вариации зависимой переменной, обусловленной регрессией или изменчивостью объясняющей переменной. Чем ближе R2 к 1, тем теснее наблюдения примыкают к линии регрессии, тем лучше регрессия описывает зависимость переменных.
Расхождение между η2 и R2 может быть использовано для проверки линейности корреляционной зависимости.
- Тема 1: Случайные события. Классификация событий
- 2. Классическое определение вероятности. Свойства вероятности события
- 3. Статистическое определение вероятности события и условия его применимости
- Лекция 2 Тема 2: Основные теоремы
- 1. Сумма событий. Теорема сложения вероятностей и её следствия
- 2. Зависимые и независимые события. Произведение событий. Условная вероятность. Теорема умножения вероятностей
- 3. Формула полной вероятности. Формула Байеса
- Лекция 3 Тема 3: Повторные независимые испытания Тема 4: Дискретные случайные величины
- 1. Повторные независимые испытания. Формула Бернулли
- 2. Асимптотическая формула Пуассона и условия ее применимости
- 3. Локальная теорема Муавра-Лапласа и условия ее применимости
- 4. Интегральная теорема Муавра-Лапласа, её следствия и условия их применимости
- 5. Понятие случайной величины и ее описание. Дискретная случайная величина и ее закон (ряд) распределения.
- Лекция 4 Тема 4: Дискретные случайные величины
- 1. Математические операции над дискретными случайными величинами
- 2. Математическое ожидание, дисперсия и среднее квадратическое отклонение дискретной случайной величины, их свойства
- 3. Математическое ожидание и дисперсия числа m и частости m/n наступлений события в п повторных независимых испытаниях
- 4. Биномиальный закон распределения и закон Пуассона
- Лекция 5 Тема 5: Непрерывные случайные величины. Нормальный закон распределения
- 1. Функция распределения случайной величины, ее свойства и график
- 2. Непрерывная случайная величина (нсв). Плотность вероятности нсв, ее определение и свойства
- 3. Равномерный (прямоугольный) закон распределения и его числовые характеристики.
- Лекция 6 Тема 5: Непрерывные случайные величины. Нормальный закон распределения
- 1. Нормальный закон распределения
- 2. Формулы для определения вероятностей: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило трех сигм
- 3. Центральная предельная теорема. Понятие о теореме Ляпунова
- Лекция 7 Тема 6: Двумерные (n-мерные) случайные величины
- 1. Понятие двумерной (n-мерной) случайные величины
- 2. Условные распределения и их нахождение по таблице распределения
- 3. Понятие о функции распределения и плотности вероятности двумерной случайной величины
- 4. Ковариация и коэффициент корреляции
- Лекция 8 Тема 6: Двумерные (n-мерные) случайные величины Тема 7: Закон больших чисел
- 1. Двумерное нормальное распределение. Условное математическое ожидание и условная дисперсия
- 2. Лемма Чебышева (неравенство Маркова) Неравенство Чебышева и его частные случаи для случайной величины, распределенной по биномиальному закону, и для частости события
- 3. Неравенство Чебышева для средней арифметической случайных величин. Теорема Чебышева и ее значение
- 4. Закон больших чисел. Теорема Бернулли и ее практическое значение
- Лекция 9 Тема 8. Выборочный метод. Общие вопросы
- 1. Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда
- 2. Генеральная и выборочная совокупности. Основная задача выборочного метода
- 3. Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность
- Лекция 10 Тема 9: Оценка доли признака и генеральной средней
- 1. Оценка генеральной доли и генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность оценок
- 2. Оценка генеральной средней по собственно-случайной выборке
- 2. Оценка генеральной дисперсии по собственно-случайной выборке. Исправленная выборочная дисперсия
- 3. Понятие доверительного интервала и доверительной вероятности оценки
- 4. Средняя квадратическая ошибка выборки при оценке генеральной доли и генеральной средней
- 5. Определение необходимого объема повторной и бесповторной выборок
- Лекция 11 Тема 10: Элементы статистической проверки гипотез
- 1. Статистическая гипотеза и статистический критерий
- 2. Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия
- 3. Критерий согласия 2 Пирсона и схема его применения
- Лекция 12 Тема 11: Элементы теории корреляции
- 1. Функциональная, статистическая и корреляционная зависимости. Основные задачи теории корреляции
- 2. Линейная корреляция. Уравнения прямых регрессии для парной корреляции
- 3. Оценка тесноты связи. Коэффициент корреляции (выборочный), его определение и свойства
- 4. Коэффициент детерминации и корреляционное отношение.
- 5. Проверка значимости уравнения регрессии