15. Окружность Эйлера
Т еорема 6.14. В любом треугольнике основания высот, середины сторон и середины отрезков, соединяющих ортоцентр с вершинами, лежат на одной окружности.
Окружность носит название окружности девяти точек или окружности Эйлера.
Дано: АВС, А1 — середина ВС, В1 — середина АС, С1 — середина АВ, ВН2 перпендик. АС, Н2€АС, АН1перпенд.ВС, H1,€ВС, СН3перп.АВ, H3 €АВ, АH1пересеч. ВH2 и с СH3 = Н , А2 — середина АH, В2 — середина ВH, С2 — середина СH (рис. 6.11). Доказать: А1, В1, С1, H1, H2, H3, A2, В2, С2 — лежат на окружности.
Доказательство.
1) Рассмотрим четырехугольник A2C1A1C2. С1А1 — средняя линия ∆АВС .Значит, С1А1 || АС и С1A1 = 1/2АС ;
А 2С2 — средняя линия ∆АНС .Значит, С2A2|| АС и С2A2 = 1/2 АС . Следовательно, А2С1А1С2 —параллелограмм.
C1,A2 — средняя линия ∆АВH . Значит, С1A2 || ВH . Следовательно, С1A2 1 A2C2 , так как А2С2|| АС.
Таким образом, С1А2С2А1 — прямоугольник. Тогда существует окружность, диаметром которой является отрезок С1С2 (т. е. точка Е— середина С1С2 — ее центр), которой принадлежат точки А2, С1, А1, С2.
С1В2С2В1— прямоугольник, так как:
а) С1В1 — средняя линия ∆АВС . Значит, С1В1 || ВС и С1В1 = 1/2ВС.
б) С2В2 — средняя линия ∆ВHС . Значит, С2В2|| С В и С2В2 = 1/2СВ .
в) С1В2перп.В2С2, так как С1В2|| АH и В2С2|| АН .
5) С1С2 — диаметр окружности (центр окружности Е), описанной около прямоугольника В1С1В2С2. Таким образом, точки С, В2, Д, С2, В1, А2 принадлежат окружности с центром Е и диаметром С,С2.
6) E— середина диагонали С,С2 прямоугольников С,A2С2A1 и С1В1С2В1. Значит, и вторые диагонали A1А2 и В,В2 соответственно прямоугольников С,A2С2A1 и С1В2С2В1 проходят через точку Е, так как диагонали прямоугольника равны и точкой пересечения делятся пополам. Значит, A1A2 и В,В2 —тоже диаметры этой окружности.
7) УГОЛ B2H2B 1= 90°, так как ВН2перп. А С, и этот угол опирается на диаметр В2В, окружности с центром Е. Значит, Н2 лежит на окружности.
Аналогично угол А2H1A1 = 90° и A1A2 — диаметр окружности. Значит, точка H, лежит на окружности. уголC1H3C2 = 90° и С,С2 — диаметр окружности. Следовательно, точка H3 принадлежит окружности. Таким образом, все девять точек лежат на окружности. Теорема доказана.
Tеорема 6.15. Центр Е окружности девяти точек треугольника лежит на середине отрезка ОН, где Н — ортоцентр треугольника, О — центр описанной окружности, а радиус окружности девяти точек равен половине радиуса описанной около треугольника окружности
Теорема 6.16. Расстояние между центрами О и I описанной и вписанной окружностей треугольника и радиусы R и .r этих окружностей связаны формулой: OI2 = R2 - 2Rr, называемой формулой Эйлера.
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- Функциональные методы
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 2. Способ замены.
- 3. Разложение на множители.
- 4. Однородные тригонометрические уравнения вида
- 5. Универсальная замена.
- 16. Основные методы решения тригонометрических неравенств
- 17. Решение уравнений и неравенств, содержащих обратные тригонометрические функции
- 18. Метод интервалов при решении тригонометрических неравенств
- 19. Графики функций и уравнений. Основные преобразования графиков функций
- 1) Область определения функции и область значений функции.
- 3) Пересечение с осями коорд.
- 6) Точки экстремума
- 7) Периодическость функции.
- 21. Основные тригонометрические функции и их св-ва
- 22. Обратные тригонометрические функции, графики, свойства
- 24. Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 25. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 26. Методы решения уравнения . Методы решения неравенства
- 27. Обобщающий метод интервалов для решения неравенств
- Основные соотношения между элементами треугольника
- 2. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
- 4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
- 5. Метод площадей.
- 6.Теорема Чевы
- 7.Теорема Менелая
- 8. Теорема Пифагора. Обобщенная теорема Пифагора.
- 9.Метрические соотношения в окружности. Свойства хорд
- Свойства хорд
- 10. Свойства секущих и касательных к окружности.
- 11. Измерение углов, связанных с окружностью
- 12. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 14. Прямая Эйлера
- 15. Окружность Эйлера
- 16. Вневписанная окружность.
- 17. Основные виды четырехугольников, их св-ва и признаки
- 18. Вписанные четырехугольники. Вписанные многоугольники
- 19. Описанные четырехугольники. Описанные многоугольники
- 20. Теорема Пифагора для четырехугольников.
- 21. Теорема Птолемея.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 5.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Параллельность прямых и плоскостей в пространстве.Использование параллельности для построения сечений многогранников.