Введение
В веке многие математики (в том числе у нас в России, например, М.Е.Ващенко - Захарченко и А.В.Летников) занимались так называемым символическим исчислением. В основе этого исчисления лежало построение математического анализа как системы формальных операций над символом (-независимая переменная).
Например, - ная производная функции представляется как результат действия на символа , левая часть линейного дифференциального уравнения с постоянными коэффициентами
- как результат действия на символа.
.
Символическое исчисление оказалось довольно удобным для решения различных задач, связанных с линейными дифференциальными уравнениями. Его популяризации в веке в сильной мере способствовал английский инженер-электрик О.Хевисайд, который успешно использовал символическое исчисление в электротехнических расчетах.
Обоснование символичного или, как стали называть, операционного метода было дано лишь в двадцатых годах двадцатого столетия Бромвичем и Карсоном, связавшими этот метод с известным из теории функций комплексного переменного методом интегральных преобразований, которым с успехом пользовались Коши, Лаплас и другие математики. При этом символ (оператор) получил новое толкование, как комплексная переменная , а вместе с ним новую трактовку получил и сам операционный метод.
Операционный метод получил также иное строгое обоснование с помощью общей теории операторов, развитый в функциональном анализе, представленной в работах В.А.Диткина и А.П.Прудникова. В последнее время весьма оригинальную и простую трактовку операционного метода дал польский математик Ян Микусинский.
В данной работе излагаются основные положения операционного метода и особое внимание уделяется применению его для решения различных задач.
Yandex.RTB R-A-252273-3- Введение
- 1. Понятие оригинала
- 2. Изображение по лапласу
- 3. Изображения простейших элементарных функций
- 4.Свойства преобразования лапласа
- 2С) Теорема подобия
- 3C) Теорема затухания (Теорема смещения)
- 5C) Теорема опережения.
- 10С) Интегрирование изображений.
- 11С) Теорема умножения изображений (теорема Бореля)
- 12С) Умножение оригиналов.
- 5.Примеры нахождения изображений с помощью таблиц 1 и 2
- 6. Импульсные функции и их изображения
- 7.Формула обращения преобразования лапласа
- 1)Тождественные преобразования и применение таблиц 1 и 2.
- 2) Вычисление оригиналов с помощью вычетов.
- 8.Применение преобразования лапласа для решения уравнений и систем
- 8.1 Решение линейных дифференциальных уравнений с постоянными коэффициентами.
- 8.2 Решение дифференциальных уравнений с постоянными коэффициентами с помощью интеграла Дюамеля.
- 8.3 Решение дифференциальных уравнений с переменными коэффициентами.
- 8.4 Решение систем линейных дифференциальных уравнений с постоянными коэффициентами.
- 8.5 Линейные дифференциальные уравнения с запаздывающим аргументом.
- 8.6 Интегральные уравнения типа «свертки».
- 8.7 Линейные интегро-дифференциальные уравнения.
- 9.Решение диференциальных уравнений в частных производных и задач математической физики
- 10. Применение операторных методов для анализа линейных систем
- 11. Дискретное преобразование лапласа. Z – преобразование лорана
- 1) Решетчатые функции.
- 2) Конечные разности решетчатых функций.
- 3) Суммирование решетчатых функций.
- 4) Определение дискретного преобразования Лапласа.
- 5) Формула обращения.
- 1С) Теорема линейности.
- Библиографический список
- Оглавление