logo
ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ И НЕКОТОРЫЕ ЕГО ПРИЛОЖЕНИЯ

Введение

В веке многие математики (в том числе у нас в России, например, М.Е.Ващенко - Захарченко и А.В.Летников) занимались так называемым символическим исчислением. В основе этого исчисления лежало построение математического анализа как системы формальных операций над символом (-независимая переменная).

Например, - ная производная функции представляется как результат действия на символа , левая часть линейного дифференциального уравнения с постоянными коэффициентами

- как результат действия на символа.

.

Символическое исчисление оказалось довольно удобным для решения различных задач, связанных с линейными дифференциальными уравнениями. Его популяризации в веке в сильной мере способствовал английский инженер-электрик О.Хевисайд, который успешно использовал символическое исчисление в электротехнических расчетах.

Обоснование символичного или, как стали называть, операционного метода было дано лишь в двадцатых годах двадцатого столетия Бромвичем и Карсоном, связавшими этот метод с известным из теории функций комплексного переменного методом интегральных преобразований, которым с успехом пользовались Коши, Лаплас и другие математики. При этом символ (оператор) получил новое толкование, как комплексная переменная , а вместе с ним новую трактовку получил и сам операционный метод.

Операционный метод получил также иное строгое обоснование с помощью общей теории операторов, развитый в функциональном анализе, представленной в работах В.А.Диткина и А.П.Прудникова. В последнее время весьма оригинальную и простую трактовку операционного метода дал польский математик Ян Микусинский.

В данной работе излагаются основные положения операционного метода и особое внимание уделяется применению его для решения различных задач.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4