7.Формула обращения преобразования лапласа
Из математического анализа известно экспоненциальное преобразование Фурье абсолютно интегрируемой функции :
и формула его обращения:
- интеграл понимается в смысле главного значения.
Пусть - функция-оригинал. Тогдапри будет абсолютно интегрируемой и ее можно преобразовать по Фурье:
- преобразование по Лапласу для функции
Таким образом, получили: преобразование по Фурье есть преобразование по Лапласу функции.
Тогда из формулы обращения преобразования Фурье получаем:
или
Итак, получим формулу:
(7.1)
где интегрирование производится по любой бесконечной прямой , лежащей в полуплоскости абсолютной сходимости интеграла Лапласа (т.е. левее) (рис.7.1).
Формула (7.1) является формулой обратного преобразования Лапласа. Еще ее называют формулой Римана-Мелина. Пользуясь этой формулой можно найти оригинал, соответствующий данному изображению. Отметим, что несобственный интеграл, стоящий справа понимается в смысле главного значения
Вычисление интеграла (1) для произвольных аналитических функций F(p) представляет большие трудности, поэтому будем рассматривать важные для нас частные случаи, которые исчерпывают наши потребности в вычислениях f(t).
Yandex.RTB R-A-252273-3
- Введение
- 1. Понятие оригинала
- 2. Изображение по лапласу
- 3. Изображения простейших элементарных функций
- 4.Свойства преобразования лапласа
- 2С) Теорема подобия
- 3C) Теорема затухания (Теорема смещения)
- 5C) Теорема опережения.
- 10С) Интегрирование изображений.
- 11С) Теорема умножения изображений (теорема Бореля)
- 12С) Умножение оригиналов.
- 5.Примеры нахождения изображений с помощью таблиц 1 и 2
- 6. Импульсные функции и их изображения
- 7.Формула обращения преобразования лапласа
- 1)Тождественные преобразования и применение таблиц 1 и 2.
- 2) Вычисление оригиналов с помощью вычетов.
- 8.Применение преобразования лапласа для решения уравнений и систем
- 8.1 Решение линейных дифференциальных уравнений с постоянными коэффициентами.
- 8.2 Решение дифференциальных уравнений с постоянными коэффициентами с помощью интеграла Дюамеля.
- 8.3 Решение дифференциальных уравнений с переменными коэффициентами.
- 8.4 Решение систем линейных дифференциальных уравнений с постоянными коэффициентами.
- 8.5 Линейные дифференциальные уравнения с запаздывающим аргументом.
- 8.6 Интегральные уравнения типа «свертки».
- 8.7 Линейные интегро-дифференциальные уравнения.
- 9.Решение диференциальных уравнений в частных производных и задач математической физики
- 10. Применение операторных методов для анализа линейных систем
- 11. Дискретное преобразование лапласа. Z – преобразование лорана
- 1) Решетчатые функции.
- 2) Конечные разности решетчатых функций.
- 3) Суммирование решетчатых функций.
- 4) Определение дискретного преобразования Лапласа.
- 5) Формула обращения.
- 1С) Теорема линейности.
- Библиографический список
- Оглавление