8.5 Линейные дифференциальные уравнения с запаздывающим аргументом.
В ряде технических задач приходится иметь дело с дифференциальными уравнениями, в которых неизвестная функция входит при различных значениях аргумента, например:
и т.п.
Такие уравнения называются дифференциальными уравнениями с отклоняющимися аргументами.
Если постоянные, то мы имеем так называемое дифференциально – разностное уравнение.
Если и старшая производная входитв дифференциально-разностное уравнение только при одном значении аргумента, не меньшем всех других аргументов функций и производных, входящих в уравнение, то уравнение называют дифференциальным уравнением с запаздывающим аргументом.
Пусть дано дифференциальное уравнение с запаздывающим аргументом с постоянными коэффициентами
,
где =const, .
Возьмем для простоты нулевые начальные условия
.
Применяя преобразования Лапласа, получим
.
Откуда найдем
от изображения переходим к оригиналу x(t).
Пример: Решить уравнение.
.
Решение:
В области изображений откуда
Переходим к оригиналу
.
Yandex.RTB R-A-252273-3
- Введение
- 1. Понятие оригинала
- 2. Изображение по лапласу
- 3. Изображения простейших элементарных функций
- 4.Свойства преобразования лапласа
- 2С) Теорема подобия
- 3C) Теорема затухания (Теорема смещения)
- 5C) Теорема опережения.
- 10С) Интегрирование изображений.
- 11С) Теорема умножения изображений (теорема Бореля)
- 12С) Умножение оригиналов.
- 5.Примеры нахождения изображений с помощью таблиц 1 и 2
- 6. Импульсные функции и их изображения
- 7.Формула обращения преобразования лапласа
- 1)Тождественные преобразования и применение таблиц 1 и 2.
- 2) Вычисление оригиналов с помощью вычетов.
- 8.Применение преобразования лапласа для решения уравнений и систем
- 8.1 Решение линейных дифференциальных уравнений с постоянными коэффициентами.
- 8.2 Решение дифференциальных уравнений с постоянными коэффициентами с помощью интеграла Дюамеля.
- 8.3 Решение дифференциальных уравнений с переменными коэффициентами.
- 8.4 Решение систем линейных дифференциальных уравнений с постоянными коэффициентами.
- 8.5 Линейные дифференциальные уравнения с запаздывающим аргументом.
- 8.6 Интегральные уравнения типа «свертки».
- 8.7 Линейные интегро-дифференциальные уравнения.
- 9.Решение диференциальных уравнений в частных производных и задач математической физики
- 10. Применение операторных методов для анализа линейных систем
- 11. Дискретное преобразование лапласа. Z – преобразование лорана
- 1) Решетчатые функции.
- 2) Конечные разности решетчатых функций.
- 3) Суммирование решетчатых функций.
- 4) Определение дискретного преобразования Лапласа.
- 5) Формула обращения.
- 1С) Теорема линейности.
- Библиографический список
- Оглавление