Кубическое задание функций алгебры логики
Как следует из рассмотренного выше, функция алгебры логики (булева функция) может быть задана:
-
аналитически (системой булевых функций);
-
словесным описанием;
-
таблицей истинности;
-
картами (диаграммами) Венна, Вейча, Карно;
-
логической схемой.
Более компактной формой записи функций алгебры логики является форма, когда вместо полного перечисления всех конъюнкций (дизъюнкций) используют номера наборов, на которых функция принимает единичное значение. Так, например, форма записи f(x1x2x3)=V F(0,2,3) означает, что функция от трех переменных принимает единичное значение на 0, 2 и 3 наборах таблицы истинности. Такая форма записи называется числовой.
Некоторые методы минимизации ориентируются на задание булевой функции в виде кубического покрытия. При этом логическая функция удобно интерпретируется с использованием ее геометрического представления. Так, функцию двух переменных можно интерпретировать как плоскость, заданную в системе координат х1х2. Получится квадрат, вершины которого соответствуют комбинациям переменных. Для геометрической интерпретации функции трех переменных используется куб, заданный в системе координат х1х2х3 .
Новое представление булевой функции получается путем отображения булевой функции n переменных на n-мерный куб (n-куб).
Для отображения булевой функции n переменных на n-кубе устанавливается соответствие между членами СДНФ и вершинами n-куба. На n-кубе определим координатную систему с координатами (e1,......,en), ei=0,1.
Установим соответствие между членом СДНФ x1e1 x2e2... xnen и некоторой вершиной e1,e2, ....,en куба. При этом xiei = xi, если ei=1, и xiei = xi, если ei=0.
Р ис.23. Геометрическое представление функции двух и трех переменных
Каждый набор при кубическом задании ФАЛ называется кубом.
Как следует из таблицы истинности (табл. 14), функция f определена на трех группах наборов переменных: L={3,4,5,6,7}, D={0,2} и N={1}.
Конъюнкции максимального ранга (конституенты единицы) принято называть 0-кубами. Множество 0-кубов образуют кубический комплекс
Таблица 14 | ||||
| х1 | х2 | х3 | f |
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | - |
2 | 0 | 1 | 0 | 0 |
3 | 0 | 1 | 1 | 1 |
4 | 1 | 0 | 0 | 1 |
5 | 1 | 0 | 1 | 1 |
6 | 1 | 1 | 0 | 1 |
7 | 1 | 1 | 1 | 1 |
011
100
К0 = 101 .
110
111
Над 0-кубами, кодовое расстояние которых равно 1, выполняется операция склеивания, в результате которой образуются новые кубы, содержащие свободные координаты. Свободная (независимая) координата может принимать как нулевое, так и единичное значение, остальные компоненты называются связанными. Куб, содержащий свободные координаты, покрывает кубы, на которых он образован. Куб с одной независимой координатой х называется кубом первой размерности и в геометрическом представлении это ребро, покрывающее обе вершины. Кубы, образующиеся в результате последовательного выполнения операции склеивания, назовем r-кубами, где r – размерность полученного куба.
Рис. 24. Образование новых кубов
Кубическое представление ФАЛ позволяет обойтись тремя переменными 0,1,х вместо х1, х2,...,хn .
Количество свободных координат в кубе определяет его размерность r, чем i-го куба. больше r, тем больше свободных координат и тем меньше входов будет иметь реализующая его схема (логический элемент).
Цена схемы определяется количеством входов элементов, используемых для ее реализации:
,
где k − количество полученных кубов; n-ri − количество единичных и нулевых значений
Два r-куба могут образовать r+1-куб, если в этих r-кубах все координаты, в том числе и свободные, совпадают, за исключением лишь какой-либо одной, которая в этих кубах имеет противоположное значение.
На рис. 25 приведено изображение куба, соответствующего булевой функции от четырёх переменных (гиперкуб).
Рис. 25. Геометрическое представление функции четырех переменных
Как следует из рисунка, геометрическое представление 4-куба уже довольно сложное. Поэтому для функций, зависящих более чем от четырёх переменных, предпочтительным является аналитическое представление булевых функций.
Yandex.RTB R-A-252273-3
- Арифметические и логические основы вычислительной техники учебное пособие
- Введение
- Арифметические основы вычислительной техники Системы счисления
- Двоичная система счисления
- Восьмеричная система счисления
- Шестнадцатеричная система счисления
- Критерии выбора системы счисления
- Перевод чисел из одной системы счисления в другую
- Перевод целых чисел
- Перевод правильных дробей
- Перевод чисел из одной системы счисления в другую, основание которой кратно степени 2
- Кодирование чисел
- Переполнение разрядной сетки
- Модифицированные коды
- Машинные формы представления чисел
- Погрешность выполнения арифметических операций
- Округление
- Нормализация чисел
- Последовательное и параллельное сложение чисел
- Сложение чисел с плавающей запятой
- Машинные методы умножения чисел в прямых кодах
- Ускорение операции умножения
- Умножение с хранением переносов
- Умножение на два разряда множителя одновременно
- Умножение на четыре разряда одновременно
- Умножение в дополнительных кодах
- Умножение на два разряда множителя в дополнительных кодах
- Матричные методы умножения
- Машинные методы деления
- Деление чисел в прямых кодах
- Деление чисел в дополнительных кодах
- Методы ускорения деления
- Двоично-десятичные коды
- Суммирование чисел с одинаковыми знаками в bcd-коде
- Суммирование чисел с разными знаками в bcd-коде
- Система счисления в остаточных классах (сок)
- Представление отрицательных чисел в сок
- Контроль работы цифрового автомата
- Некоторые понятия теории кодирования
- Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
- Коды Хемминга
- Логические основы вычислительной техники Двоичные переменные и булевы функции
- Способы задания булевых функций
- Основные понятия алгебры логики
- Основные законы алгебры логики
- Формы представления функций алгебры логики
- Системы функций алгебры логики
- Минимизация фал
- Метод Квайна
- Метод Блейка - Порецкого
- Метод минимизирующих карт Карно (Вейча)
- Б в Рис. 19. Таблица истинности и карта Карно
- Минимизация конъюнктивных нормальных форм
- Минимизация не полностью определенных фал
- Кубическое задание функций алгебры логики
- Метод Квайна −Мак-Класки
- Алгоритм извлечения (Рота)
- Нахождение множества простых импликант
- Определение l-экстремалей
- Минимизация фал методом преобразования логических выражений
- Применение правил и законов алгебры логики к синтезу некоторых цифровых устройств Синтез одноразрядного полного комбинационного сумматора
- Синтез одноразрядного комбинационного полусумматора
- Синтез одноразрядного полного комбинационного сумматора на двух полусумматорах
- Синтез одноразрядного комбинационного вычитателя
- Объединенная схема одноразрядного комбинационного сумматора-вычитателя
- Триггер со счетным входом как полный одноразрядный сумматор
- Введение в теорию конечных автоматов Основные понятия теории автоматов
- Способы задания автоматов
- Структурный автомат
- Память автомата
- Канонический метод структурного синтеза автоматов
- Принцип микропрограммного управления
- Граф-схема алгоритма
- Пример синтеза мпа по гса
- Синтез мпа Мили по гса
- Синхронизация автоматов
- Литература
- 220013, Минск, п.Бровки, 6