Формы представления функций алгебры логики
Основными понятиями, лежащими в основе представления булевых функций в различных формах, являются понятия элементарной конъюнкции и элементарной дизъюнкции.
Элементарной конъюнкцией называется логическое произведение любого конечного числа различных между собой булевых переменных, взятых со знаком инверсии или без него.
Например, логические выражения вида x1x2x3 , x1x4 , x1x2x4 являются элементарными конъюнкциями, а выражения вида x1x2x3 , x1x4 , x1x2x4 не являются элементарными конъюнкциями.
Элементарной дизъюнкцией называется логическая сумма любого конечного числа различных между собой булевых переменных, взятых со знаком инверсии или без него
Примером логического выражения, являющегося элементарной дизъюнкцией, могут служить x1+x2+x3 , x1+x4 , x1+x2+x4 , а выражения вида x1+x2+x3, x1+x4 , x1+x2+x4 не являются элементарными дизъюнкциями.
Дизъюнктивной нормальной формой (ДНФ) булевой функции называется дизъюнкция конечного числа элементарных конъюнкций.
Число переменных, входящих в элементарную конъюнкцию, определяет ранг этой конъюнкции.
Совершенной ДНФ (СДНФ) логической функции от n аргументов называется такая ДНФ, в которой все конъюнкции имеют ранг n. СДНФ записывается по таблице истинности согласно правилу: для каждого набора переменных, на котором булева функция принимает единичное значение, записывается конъюнкция ранга n и все эти конъюнкции объединяются дизъюнктивно; переменная имеет знак инверсии, если на соответствующем наборе имеет нулевое значение.
В общем виде это можно записать следующим образом:
,
где
Элементарные конъюнкции, образующие СДНФ, называют также конституентами (составляющими) единицы (минтерм), так как они соответствуют наборам, при которых функция принимает значение, равное единице. Построение СДНФ по таблице истинности называют составлением булевой функции по условиям истинности.
Конъюнктивной нормальной формой (КНФ) булевой функции называется конъюнкция конечного числа элементарных дизъюнкций.
Совершенной КНФ (СКНФ) логической функции от n аргументов называется такая КНФ, в которой все дизъюнкции имеют ранг n. СКНФ записывается по таблице истинности согласно правилу: для каждого набора переменных, на котором булева функция принимает нулевое значение, записывается дизъюнкция ранга n и все эти дизъюнкции объединяются конъюнктивно; переменная имеет знак инверсии, если на соответствующем наборе имеет единичное значение.
Элементарные дизъюнкции, образующие СКНФ, называют конституентами (составляющими) нуля (макстерм), так как они соответствуют наборам, при которых функция принимает нулевое значение. Построение СКНФ по таблице истинности называют составлением булевой функции по условиям ложности.
Теорема. Разложение в дизъюнкцию. Любую функцию f(x1,...,xm) для любого n (1 n m) можно представить в виде
f(x1,...,xm) = x11 & ... & xnn & f(1,...,n,xn+1,...,xm).
Доказательство. Покажем, что для любого набора значений переменных (x1,...,xn,xn+1,...,xm) значения левой и правой частей совпадают. Возьмём фиксированный набор (x1,...,xn,xn+1,...,xm). Рассмотрим выражение x11 & ... & xnn. Если одно из значений xii равно 0, то и всё выражение равно 0. Тогда и выражение x11 & ... & xnn & f(1,...,n,xn+1,...,xm) равно 0. Единице же выражение
x11 & ... & xnn равно только в том случае, если 1 = x1, ..., n = xn. При этом f(1,...,n,xn+1,...,xm) = f(x1,...,xn,xn+1,...,xm). Таким образом, значение правой части всегда равно f(x1,...,xm), то есть значению левой части.
Теорема. Разложение в конъюнкцию. Любую функцию f(x1,...,xm) для любого n (1 n m) можно представить в виде
Разложения по всем переменным дают суперпозицию конъюнкции, дизъюнкции и отрицания.
Следствие 1. Совершенная дизъюнктивная нормальная форма.
Любая функция f может быть представлена в следующей форме:
f(x1,...,xm) = x11 & ... & xmm & f(1,...,m) =
= x11 & ... & xmm
Следствие 2. Совершенная конъюнктивная нормальная форма.
Любая функция f может быть представлена в следующей форме:
Таким образом, любая булева функция может быть представлена суперпозицией конъюнкции, дизъюнкции и отрицания. Разложение по всем переменным в дизъюнкцию называется совершенной дизъюнктивной нормальной формой функции, а в конъюнкцию – совершенной конъюнктивной нормальной формой. Совершенная дизъюнктивная и конъюнктивная нормальная формы дают способ представления булевой функции через суперпозицию конъюнкции, дизъюнкции и отрицания.
Чтобы получить совершенную дизъюнктивную нормальную форму, надо взять все наборы, на которых значение функции равно 1, и записать для каждого из них конъюнкцию переменных и их отрицаний. Если в наборе значение переменной равно 0, то переменную надо взять с отрицанием, если 1 – без отрицания. Из получившихся конъюнкций надо построить дизъюнкцию.
Чтобы получить совершенную конъюнктивную нормальную форму, надо взять все наборы, на которых значение функции равно 0, и записать для каждого из них дизъюнкцию переменных и их отрицаний. Если в наборе значение переменной равно 0, то переменную надо взять без отрицания, если 1 – с отрицанием. Из получившихся дизъюнкций надо построить конъюнкцию.
Yandex.RTB R-A-252273-3- Арифметические и логические основы вычислительной техники учебное пособие
- Введение
- Арифметические основы вычислительной техники Системы счисления
- Двоичная система счисления
- Восьмеричная система счисления
- Шестнадцатеричная система счисления
- Критерии выбора системы счисления
- Перевод чисел из одной системы счисления в другую
- Перевод целых чисел
- Перевод правильных дробей
- Перевод чисел из одной системы счисления в другую, основание которой кратно степени 2
- Кодирование чисел
- Переполнение разрядной сетки
- Модифицированные коды
- Машинные формы представления чисел
- Погрешность выполнения арифметических операций
- Округление
- Нормализация чисел
- Последовательное и параллельное сложение чисел
- Сложение чисел с плавающей запятой
- Машинные методы умножения чисел в прямых кодах
- Ускорение операции умножения
- Умножение с хранением переносов
- Умножение на два разряда множителя одновременно
- Умножение на четыре разряда одновременно
- Умножение в дополнительных кодах
- Умножение на два разряда множителя в дополнительных кодах
- Матричные методы умножения
- Машинные методы деления
- Деление чисел в прямых кодах
- Деление чисел в дополнительных кодах
- Методы ускорения деления
- Двоично-десятичные коды
- Суммирование чисел с одинаковыми знаками в bcd-коде
- Суммирование чисел с разными знаками в bcd-коде
- Система счисления в остаточных классах (сок)
- Представление отрицательных чисел в сок
- Контроль работы цифрового автомата
- Некоторые понятия теории кодирования
- Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
- Коды Хемминга
- Логические основы вычислительной техники Двоичные переменные и булевы функции
- Способы задания булевых функций
- Основные понятия алгебры логики
- Основные законы алгебры логики
- Формы представления функций алгебры логики
- Системы функций алгебры логики
- Минимизация фал
- Метод Квайна
- Метод Блейка - Порецкого
- Метод минимизирующих карт Карно (Вейча)
- Б в Рис. 19. Таблица истинности и карта Карно
- Минимизация конъюнктивных нормальных форм
- Минимизация не полностью определенных фал
- Кубическое задание функций алгебры логики
- Метод Квайна −Мак-Класки
- Алгоритм извлечения (Рота)
- Нахождение множества простых импликант
- Определение l-экстремалей
- Минимизация фал методом преобразования логических выражений
- Применение правил и законов алгебры логики к синтезу некоторых цифровых устройств Синтез одноразрядного полного комбинационного сумматора
- Синтез одноразрядного комбинационного полусумматора
- Синтез одноразрядного полного комбинационного сумматора на двух полусумматорах
- Синтез одноразрядного комбинационного вычитателя
- Объединенная схема одноразрядного комбинационного сумматора-вычитателя
- Триггер со счетным входом как полный одноразрядный сумматор
- Введение в теорию конечных автоматов Основные понятия теории автоматов
- Способы задания автоматов
- Структурный автомат
- Память автомата
- Канонический метод структурного синтеза автоматов
- Принцип микропрограммного управления
- Граф-схема алгоритма
- Пример синтеза мпа по гса
- Синтез мпа Мили по гса
- Синхронизация автоматов
- Литература
- 220013, Минск, п.Бровки, 6