Умножение на два разряда множителя одновременно
Разбиение множителя на группы длиной k разрядов означает переход к новой системе счисления с основанием 2k. Если при этом удается сократить количество элементарных действий, выполняемых при умножении (сложение и сдвиги), то сокращается время умножения. Остановимся более подробно на умножении на два разряда множителя за один такт (k=2). Это связано с анализом пар разрядов множителя.
Возможны четыре случая сочетания разрядов множителя: 00, 01, 10, 11. Умножение на каждую из пар разрядов множителя должно выполняться за один такт автоматного времени, то есть в каждом такте умножения должно выполняться не более одного сложения. Рассмотрим умножение на эти пары на примере алгоритма А.
В случае пары 00 необходимо выполнить только сдвиг частичной суммы на два разряда - 2-2 .
Для пары 01 выполняется добавление множимого в сумматор с последующим сдвигом суммы на два разряда - 2-2 .
При наличии пары 10 возможны следующие варианты действий:
a) 2-2 , то есть в этом случае происходят два сложения, что противоречит требованию;
б) 2-2, в этом случае требуется дополнительный регистр для хранения удвоенного Мн;
в) 2-2, что соответствует добавлению к частичной сумме сдвинутого на один разряд влево множимого;
г) 2-1, то есть частичная сумма сдвигается на один разряд вправо до и после добавления к ней множимого.
При умножении на пару 11 (к частичной сумме необходимо добавить утроенное множимое) ее можно представить в виде
11 = (22 - 1)
Мн ∙ 11= Мн∙(22 - 1) = Мн∙22- Мн, то есть в текущем такте к частичной сумме добавляется множимое, взятое со знаком минус. Добавление Мн∙22 реализуется путем увеличения на единицу следующей старшей пары разрядов.
В табл.1 представлены правила преобразования множителя для системы (0,1,1).
Таблица 1
-
Анализируемая пара разрядов Мт
Перенос из предыдущей пары
Преобразованная пара
00
0
00
01
0
01
10
0
10
11
0
01
00
1
01
01
1
10
10
1
01
11
1
00
Пример: Мн = 0101
Мт = 11000111
Мтп = 0101001001
Умножение будем осуществлять согласно алгоритму А.
[- Мн]доп = 1.1011
2 Мн = 0.1010
0.0000
+ 1.1011 = Mн
1.1011
1.1110 11 ∙ 2-2
+ 0.1010 = 2Mн
0.1000 11
0.0010 0011 ∙ 2-2
0.0000 100011 ∙ 2-2 (∙ 2-4)
+ 1.1011 =-Mн
1.1011 100011
1.1110 11100011 ∙ 2-2
+ 0.0101 = Mн
0.0011 11100011
0.0000 1111100011 ∙ 2-2
Время умножения на два разряда множителя одновременно
Появление любой из рассматриваемых пар множителей равновероятно. Следовательно, время умножения на два разряда множителя может быть выражено следующим соотношением: = ( n/2 + 1) [0,75∙(tсл + tсдв) + (0,25∙tсдв], где n – количество разрядов множителя.
Yandex.RTB R-A-252273-3
- Арифметические и логические основы вычислительной техники учебное пособие
- Введение
- Арифметические основы вычислительной техники Системы счисления
- Двоичная система счисления
- Восьмеричная система счисления
- Шестнадцатеричная система счисления
- Критерии выбора системы счисления
- Перевод чисел из одной системы счисления в другую
- Перевод целых чисел
- Перевод правильных дробей
- Перевод чисел из одной системы счисления в другую, основание которой кратно степени 2
- Кодирование чисел
- Переполнение разрядной сетки
- Модифицированные коды
- Машинные формы представления чисел
- Погрешность выполнения арифметических операций
- Округление
- Нормализация чисел
- Последовательное и параллельное сложение чисел
- Сложение чисел с плавающей запятой
- Машинные методы умножения чисел в прямых кодах
- Ускорение операции умножения
- Умножение с хранением переносов
- Умножение на два разряда множителя одновременно
- Умножение на четыре разряда одновременно
- Умножение в дополнительных кодах
- Умножение на два разряда множителя в дополнительных кодах
- Матричные методы умножения
- Машинные методы деления
- Деление чисел в прямых кодах
- Деление чисел в дополнительных кодах
- Методы ускорения деления
- Двоично-десятичные коды
- Суммирование чисел с одинаковыми знаками в bcd-коде
- Суммирование чисел с разными знаками в bcd-коде
- Система счисления в остаточных классах (сок)
- Представление отрицательных чисел в сок
- Контроль работы цифрового автомата
- Некоторые понятия теории кодирования
- Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
- Коды Хемминга
- Логические основы вычислительной техники Двоичные переменные и булевы функции
- Способы задания булевых функций
- Основные понятия алгебры логики
- Основные законы алгебры логики
- Формы представления функций алгебры логики
- Системы функций алгебры логики
- Минимизация фал
- Метод Квайна
- Метод Блейка - Порецкого
- Метод минимизирующих карт Карно (Вейча)
- Б в Рис. 19. Таблица истинности и карта Карно
- Минимизация конъюнктивных нормальных форм
- Минимизация не полностью определенных фал
- Кубическое задание функций алгебры логики
- Метод Квайна −Мак-Класки
- Алгоритм извлечения (Рота)
- Нахождение множества простых импликант
- Определение l-экстремалей
- Минимизация фал методом преобразования логических выражений
- Применение правил и законов алгебры логики к синтезу некоторых цифровых устройств Синтез одноразрядного полного комбинационного сумматора
- Синтез одноразрядного комбинационного полусумматора
- Синтез одноразрядного полного комбинационного сумматора на двух полусумматорах
- Синтез одноразрядного комбинационного вычитателя
- Объединенная схема одноразрядного комбинационного сумматора-вычитателя
- Триггер со счетным входом как полный одноразрядный сумматор
- Введение в теорию конечных автоматов Основные понятия теории автоматов
- Способы задания автоматов
- Структурный автомат
- Память автомата
- Канонический метод структурного синтеза автоматов
- Принцип микропрограммного управления
- Граф-схема алгоритма
- Пример синтеза мпа по гса
- Синтез мпа Мили по гса
- Синхронизация автоматов
- Литература
- 220013, Минск, п.Бровки, 6