Представление отрицательных чисел в сок
Рассмотрим правила выполнения операций вычитания в системе остаточных классов для чисел А и В, удовлетворяющих условию А-В [0,].
А = (1, 2, ... ,n),
В = (1, 2, ... ,n),
A-B = (1, 2, ... ,n),
при этом А<ρ, B< ρ, 0<=А-В< ρ.
Как и ранее, получаем для А-В:
i = i - i - ,
i i - i (mod pi).
Операция вычитания при положительном результате выполняется вычитанием соответствующих цифр разрядов, в результате приводится наименьший положительный остаток.
При отрицательной разности цифр берется ее дополнение к основанию. При этом знак результата в результате никак не отражен.
Возникает необходимость ввести специальным образом знак в представление числа и определить правила выполнения операций, обеспечивающих получение не только величин, но и знака результата.
Рассмотрим варианты введения отрицательных чисел.
Пусть p1, p2, ... pn - основания системы счисления.
= p1, p2, ... ,pn - диапазон представимых чисел.
Пусть p2 =2. Обозначим через В СОK Р=(1, 0, 0, ... , 0). Будем оперировать числами, лежащими в диапазоне 0≤ |N| <P.
Примем в качестве нуля число Р и представим положительные числа N= =|N| как N' = P + |N|, отрицательные числа N = - |N| как N' =P - |N|. Таким образом, N' =P+N - искусственная форма (общая форма представления + и - чисел).
Следовательно, мы всегда будем иметь дело с положительными числами, так как |N|<P.
Но числа в интервале [0,P) в искусственной форме будут отображать отрицательные, а в интервале [P,) - положительные числа.
Операцию сложения и вычитания можно выполнять следующим образом:
N′1 = P + N1,
N′2 = P + N2,
N′1 + N′2 = P + N1 + P + N2 = 2P + (N1 + N2).
Для суммы N1 + N2 искусственная форма:
(N1 + N2)′ = P + (N1 + N2),
(N′1 + N′2) = N′1 + N′2 - P
или, так как P = (1, 0, 0, ..., 0), то (N1 + N2) ′ =N′1 + N′2 + P. (9)
Пример. Пусть p1 = 2, p2 = 3, p3 = 5, p4 = 7.
P = 3∙5∙7 = 105,
N1 = 17, N2 = 41,
N′1 = (1, 0, 0, 0) + (1, 2, 2, 3) = (0, 2, 2, 3),
N′2 = (1, 0, 0, 0) + (1, 2, 1, 6) = (0, 2, 1, 6).
Согласно (9) (N1 + N2) ′ = (0, 2, 2, 3) + (0, 2, 1, 6) + (1, 0, 0, 0) = (1, 1, 3, 2) - искусственная форма N1 + N2, что можно проверить, перейдя к десятичной системе счисления.
(17 + 41)′ = (58)′ = 105 + 58 = (1, 0, 0, 0) + (0, 1, 3, 2) = (1, 1, 3, 2).
Пример. N1 = 17, N2 = 41.
N′1 = (0, 2, 2, 3),
N′2 = (1, 0, 0, 0) - (1, 2, 1, 6) = (0, 1, 5, 1),
(N1 + N2)′ = (0, 2, 2, 3) + (0, 1, 5, 1) + (1, 0, 0, 0) = (1, 0, 1, 4),
(17 - 41)′ = (-24)′ = 105 - 24 = (1, 0, 0, 0) - (0, 0, 4, 3) = (1, 0, 1, 4).
Переход из положительного числа в отрицательное и обратно, то есть образование его дополнительного кода, производится вычитанием данного числа из числа (1, p1, p2, ... ,pn).
+41 = (1, 2, 1, 6),
- 41 = (1, 3, 5, 7) - (1, 2, 1, 6) = (0, 1, 4, 1) = 64.
Следует отметить, что если вычитаемое уже было представлено в искусственной форме, то для получения дополнительного кода надо его вычитать из (2,p1,p2, ..., pn).
Yandex.RTB R-A-252273-3
- Арифметические и логические основы вычислительной техники учебное пособие
- Введение
- Арифметические основы вычислительной техники Системы счисления
- Двоичная система счисления
- Восьмеричная система счисления
- Шестнадцатеричная система счисления
- Критерии выбора системы счисления
- Перевод чисел из одной системы счисления в другую
- Перевод целых чисел
- Перевод правильных дробей
- Перевод чисел из одной системы счисления в другую, основание которой кратно степени 2
- Кодирование чисел
- Переполнение разрядной сетки
- Модифицированные коды
- Машинные формы представления чисел
- Погрешность выполнения арифметических операций
- Округление
- Нормализация чисел
- Последовательное и параллельное сложение чисел
- Сложение чисел с плавающей запятой
- Машинные методы умножения чисел в прямых кодах
- Ускорение операции умножения
- Умножение с хранением переносов
- Умножение на два разряда множителя одновременно
- Умножение на четыре разряда одновременно
- Умножение в дополнительных кодах
- Умножение на два разряда множителя в дополнительных кодах
- Матричные методы умножения
- Машинные методы деления
- Деление чисел в прямых кодах
- Деление чисел в дополнительных кодах
- Методы ускорения деления
- Двоично-десятичные коды
- Суммирование чисел с одинаковыми знаками в bcd-коде
- Суммирование чисел с разными знаками в bcd-коде
- Система счисления в остаточных классах (сок)
- Представление отрицательных чисел в сок
- Контроль работы цифрового автомата
- Некоторые понятия теории кодирования
- Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
- Коды Хемминга
- Логические основы вычислительной техники Двоичные переменные и булевы функции
- Способы задания булевых функций
- Основные понятия алгебры логики
- Основные законы алгебры логики
- Формы представления функций алгебры логики
- Системы функций алгебры логики
- Минимизация фал
- Метод Квайна
- Метод Блейка - Порецкого
- Метод минимизирующих карт Карно (Вейча)
- Б в Рис. 19. Таблица истинности и карта Карно
- Минимизация конъюнктивных нормальных форм
- Минимизация не полностью определенных фал
- Кубическое задание функций алгебры логики
- Метод Квайна −Мак-Класки
- Алгоритм извлечения (Рота)
- Нахождение множества простых импликант
- Определение l-экстремалей
- Минимизация фал методом преобразования логических выражений
- Применение правил и законов алгебры логики к синтезу некоторых цифровых устройств Синтез одноразрядного полного комбинационного сумматора
- Синтез одноразрядного комбинационного полусумматора
- Синтез одноразрядного полного комбинационного сумматора на двух полусумматорах
- Синтез одноразрядного комбинационного вычитателя
- Объединенная схема одноразрядного комбинационного сумматора-вычитателя
- Триггер со счетным входом как полный одноразрядный сумматор
- Введение в теорию конечных автоматов Основные понятия теории автоматов
- Способы задания автоматов
- Структурный автомат
- Память автомата
- Канонический метод структурного синтеза автоматов
- Принцип микропрограммного управления
- Граф-схема алгоритма
- Пример синтеза мпа по гса
- Синтез мпа Мили по гса
- Синхронизация автоматов
- Литература
- 220013, Минск, п.Бровки, 6