Перевод целых чисел
Метод подбора степеней основания. В соответствии с (2) целые числа в системах счисления с основаниями r1 и r2 могут быть представлены:
n k
A r1 = ai r1i = bj r2j = A r2 .
i=0 j=0
В общем случае перевод числа из системы счисления с основанием r1 в систему счисления с основанием r2 можно представить как задачу определения коэффициентов bi нового ряда, изображающего число в системе счисления с основанием r2. Основная трудность в выборе максимальной степени основания r2, которая еще содержится в числе Ar1. Все действия должны выполняться по правилам r1-арифметики (то есть исходной системы счисления). После нахождения максимальной степени и соответствующего ей коэффициента необходимо найти коэффициенты для всех остальных (младших) степеней.
Пример: A10=37, A2=?
37=1·25 + 0 ·24 + 0 ·23 + 1·22 + 0 ·21 + 1·20=100101.
Нечетным двоичным числом 100101 является число, содержащее единицу в младшем разряде.
Метод деления на основание системы счисления. На основании (1) число Ar1 в системе счисления с основанием r2 запишется в виде
Ar2 = an· r2n + an-1 ·r2n-1 + ... + a1· r21 + a0·r0.
Переписав это выражение по схеме Горнера, получим:
Ar2 = (...(an r2 + an-1) r2 + ... + a1) r2 + a0.
Разделив правую часть на r2, получим первый остаток a0 и целую часть (...(an r2 + an-1) r2 + ... + a1). Разделив целую часть на r2, получим остаток a1 и новую целую часть. Выполнив деление n+1 раз, получим последнее целое частное an < r2, являющееся старшей цифрой числа.
Пример: А10 = 37, A2 = ?, А5= ?
Yandex.RTB R-A-252273-3
- Арифметические и логические основы вычислительной техники учебное пособие
- Введение
- Арифметические основы вычислительной техники Системы счисления
- Двоичная система счисления
- Восьмеричная система счисления
- Шестнадцатеричная система счисления
- Критерии выбора системы счисления
- Перевод чисел из одной системы счисления в другую
- Перевод целых чисел
- Перевод правильных дробей
- Перевод чисел из одной системы счисления в другую, основание которой кратно степени 2
- Кодирование чисел
- Переполнение разрядной сетки
- Модифицированные коды
- Машинные формы представления чисел
- Погрешность выполнения арифметических операций
- Округление
- Нормализация чисел
- Последовательное и параллельное сложение чисел
- Сложение чисел с плавающей запятой
- Машинные методы умножения чисел в прямых кодах
- Ускорение операции умножения
- Умножение с хранением переносов
- Умножение на два разряда множителя одновременно
- Умножение на четыре разряда одновременно
- Умножение в дополнительных кодах
- Умножение на два разряда множителя в дополнительных кодах
- Матричные методы умножения
- Машинные методы деления
- Деление чисел в прямых кодах
- Деление чисел в дополнительных кодах
- Методы ускорения деления
- Двоично-десятичные коды
- Суммирование чисел с одинаковыми знаками в bcd-коде
- Суммирование чисел с разными знаками в bcd-коде
- Система счисления в остаточных классах (сок)
- Представление отрицательных чисел в сок
- Контроль работы цифрового автомата
- Некоторые понятия теории кодирования
- Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
- Коды Хемминга
- Логические основы вычислительной техники Двоичные переменные и булевы функции
- Способы задания булевых функций
- Основные понятия алгебры логики
- Основные законы алгебры логики
- Формы представления функций алгебры логики
- Системы функций алгебры логики
- Минимизация фал
- Метод Квайна
- Метод Блейка - Порецкого
- Метод минимизирующих карт Карно (Вейча)
- Б в Рис. 19. Таблица истинности и карта Карно
- Минимизация конъюнктивных нормальных форм
- Минимизация не полностью определенных фал
- Кубическое задание функций алгебры логики
- Метод Квайна −Мак-Класки
- Алгоритм извлечения (Рота)
- Нахождение множества простых импликант
- Определение l-экстремалей
- Минимизация фал методом преобразования логических выражений
- Применение правил и законов алгебры логики к синтезу некоторых цифровых устройств Синтез одноразрядного полного комбинационного сумматора
- Синтез одноразрядного комбинационного полусумматора
- Синтез одноразрядного полного комбинационного сумматора на двух полусумматорах
- Синтез одноразрядного комбинационного вычитателя
- Объединенная схема одноразрядного комбинационного сумматора-вычитателя
- Триггер со счетным входом как полный одноразрядный сумматор
- Введение в теорию конечных автоматов Основные понятия теории автоматов
- Способы задания автоматов
- Структурный автомат
- Память автомата
- Канонический метод структурного синтеза автоматов
- Принцип микропрограммного управления
- Граф-схема алгоритма
- Пример синтеза мпа по гса
- Синтез мпа Мили по гса
- Синхронизация автоматов
- Литература
- 220013, Минск, п.Бровки, 6