Основные законы алгебры логики
Основные законы алгебры логики позволяют проводить эквивалентные преобразования логических функций, записанных с помощью операций И, ИЛИ, НЕ, приводить их к удобному для дальнейшего использования виду и упрощать запись.
При выполнении преобразований функций алгебры логики могут быть полезны следующие соотношения:
-
всегда истинны высказывания: x + 1=1; x + x=1;
-
всегда ложны высказывания: x ∙ 0=0; x ∙ x=0;
-
правило двойного отрицания х=х;
-
правило повторения x + x + … + x=x;
x ∙ x ∙ … ∙ x =x.
Переместительный закон:
-
для дизъюнкции x1+x2 = x2+x1;
-
для конъюнкции x1∙x2 = x2∙x1;
-
для суммы по модулю два x1x2 = x2x1.
Сочетательный закон:
-
для дизъюнкции x1+(x2+x3)=(x1+x2)+x3;
-
для конъюнкции x1∙(x2∙x3)= (x1∙x2)∙x3;
-
для суммы по модулю два x1(x2x3) = (x1x2)x3,
то есть группирование переменных внутри дизъюнкции (конъюнкции) не изменяет значений функции.
Распределительный закон:
-
для дизъюнкции x1+x2∙∙x3=(x1+x2)(x1+x3),
то есть дизъюнкция переменной и конъюнкции эквивалентна конъюнкции дизъюнкций этой переменной с сомножителями;
-
для конъюнкции x1∙(x2+x3)= x1∙x2+x1∙x3,
то есть конъюнкция переменной и дизъюнкции равносильна дизъюнкции конъюнкций этой переменной со слагаемыми.
Закон инверсии (правило де Моргана):
-
для дизъюнкции x1+x2=x2 ∙ x1;
-
для конъюнкции x1∙x2=x2+x1,
то есть отрицание дизъюнкции (конъюнкции) переменных равно конъюнкции (дизъюнкции) отрицаний этих переменных.
Правило де Моргана справедливо для любого числа переменных:
x1+x2+…+xn= x1 ∙ x2 ∙ … ∙ xn,
x1∙x2∙…∙xn= x1 + x2 + … ∙ xn.
Переместительный и сочетательный законы для дизъюнкции и конъюнкции, а также распределительный закон для конъюнкции совпадают с законами обычной алгебры. Но в обычной алгебре нет законов, аналогичных распределительному для дизъюнкции и законам инверсии. Их справедливость доказывается посредством составления таблиц истинности для левой и правой частей формулы.
Правило склеивания x1∙x2+x1∙x2=x1.
Следующие соотношения могут быть выведены из рассмотренных выше:
x1+x1∙x2 = x1 ;
x1+x1∙x2 = x1∙1 +x1∙x2 = x1 ∙(1 + x2) = x1∙1 = x1;
x1 ∙(x1x2) = x1.
Yandex.RTB R-A-252273-3
- Арифметические и логические основы вычислительной техники учебное пособие
- Введение
- Арифметические основы вычислительной техники Системы счисления
- Двоичная система счисления
- Восьмеричная система счисления
- Шестнадцатеричная система счисления
- Критерии выбора системы счисления
- Перевод чисел из одной системы счисления в другую
- Перевод целых чисел
- Перевод правильных дробей
- Перевод чисел из одной системы счисления в другую, основание которой кратно степени 2
- Кодирование чисел
- Переполнение разрядной сетки
- Модифицированные коды
- Машинные формы представления чисел
- Погрешность выполнения арифметических операций
- Округление
- Нормализация чисел
- Последовательное и параллельное сложение чисел
- Сложение чисел с плавающей запятой
- Машинные методы умножения чисел в прямых кодах
- Ускорение операции умножения
- Умножение с хранением переносов
- Умножение на два разряда множителя одновременно
- Умножение на четыре разряда одновременно
- Умножение в дополнительных кодах
- Умножение на два разряда множителя в дополнительных кодах
- Матричные методы умножения
- Машинные методы деления
- Деление чисел в прямых кодах
- Деление чисел в дополнительных кодах
- Методы ускорения деления
- Двоично-десятичные коды
- Суммирование чисел с одинаковыми знаками в bcd-коде
- Суммирование чисел с разными знаками в bcd-коде
- Система счисления в остаточных классах (сок)
- Представление отрицательных чисел в сок
- Контроль работы цифрового автомата
- Некоторые понятия теории кодирования
- Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
- Коды Хемминга
- Логические основы вычислительной техники Двоичные переменные и булевы функции
- Способы задания булевых функций
- Основные понятия алгебры логики
- Основные законы алгебры логики
- Формы представления функций алгебры логики
- Системы функций алгебры логики
- Минимизация фал
- Метод Квайна
- Метод Блейка - Порецкого
- Метод минимизирующих карт Карно (Вейча)
- Б в Рис. 19. Таблица истинности и карта Карно
- Минимизация конъюнктивных нормальных форм
- Минимизация не полностью определенных фал
- Кубическое задание функций алгебры логики
- Метод Квайна −Мак-Класки
- Алгоритм извлечения (Рота)
- Нахождение множества простых импликант
- Определение l-экстремалей
- Минимизация фал методом преобразования логических выражений
- Применение правил и законов алгебры логики к синтезу некоторых цифровых устройств Синтез одноразрядного полного комбинационного сумматора
- Синтез одноразрядного комбинационного полусумматора
- Синтез одноразрядного полного комбинационного сумматора на двух полусумматорах
- Синтез одноразрядного комбинационного вычитателя
- Объединенная схема одноразрядного комбинационного сумматора-вычитателя
- Триггер со счетным входом как полный одноразрядный сумматор
- Введение в теорию конечных автоматов Основные понятия теории автоматов
- Способы задания автоматов
- Структурный автомат
- Память автомата
- Канонический метод структурного синтеза автоматов
- Принцип микропрограммного управления
- Граф-схема алгоритма
- Пример синтеза мпа по гса
- Синтез мпа Мили по гса
- Синхронизация автоматов
- Литература
- 220013, Минск, п.Бровки, 6