ОТВЕТЫ МАТАН 1-99
Теорема Лагранжа
Если функция f(x) непрерывна на замкнутом отрезке [a, b], дифференцируема внутри него, то существует такая точка с (a, b), что выполняется равенство
f(b) − f(a) = f '(c)·(b − a).
Д о к а з а т е л ь с т в о. Составим уравнение хорды, проходящей через точки (a, f(a)), (b, f(b))
y = f(a) + Q·(x - a),
где есть угловой коэффициент хорды. Рассмотрим разность ординат функции и хорды
F(x) = f(x) − f(a) − Q·(x − a).
Очевидно, что функция F(x) удовлетворяет всем условиям теоремы Ролля. Поэтому на интервале (a, b) найдётся такая точка с, для которой F ' (c) = 0. То есть F ' (c) = f ' (c) − Q = 0. Откуда следует
.
И, наконец, f(b) − f(a) = f '(c)·(b − a).
Содержание
- § 3. Основные свойства определителей 3-го порядка.
- Тогда, используя свойство 5, а затем 4, будем иметь
- Свойства обратной матрицы
- Матричный метод решения систем линейных уравнений
- Алгоритм
- [Править] Пример
- Компланарные векторы
- Бесконечно малая величина
- [Править] Бесконечно большая величина
- Предел последовательности и функции. Теоремы о пределах
- Бесконечно малые функции
- Свойства бесконечно малых функций
- Бесконечно большие функции
- Свойства бесконечно больших функций в точке
- Пределы функции на бесконечности
- Определения Править
- Окрестностное определение Править
- Определения Править
- Определения
- [Править] Односторонний предел по Гейне
- [Править] Односторонний предел по Коши
- [Править] Односторонний предел как предел вдоль фильтра
- [Править] Обозначения
- Построение асимптот при анализе функций
- Примеры:
- Точки разрыва
- Непрерывность функции в точке
- Свойства непрерывных функций
- Свойства непрерывных функций. Непрерывность сложной функции
- Теоремы о непрерывных функциях
- Непрерывность обратной функции
- Непрерывность функций
- [Править] Доказательство
- Формулировка
- [Править] Доказательство для r
- [Править] Замечания
- Второй замечательный предел
- Натуральные логарифмы
- Свойства Править
- Дифференцирование сложной функции
- [Править] Примеры
- [Править] Свойства
- [Править] Разложение в степенной ряд
- Теорема об обратной функции.
- Теорема (о дифференцировании обратной функции)
- Примеры
- Дифференцирование функций заданных параметрически
- 36. Логарифмическое дифференцирование.
- Правила отыскания производных показательных и логарифмических функций.
- Производные обратных тригонометрических функций
- Теорема Ролля
- Геометрический смысл теоремы Ролля
- Теорема Лагранжа
- Геометрический смысл теоремы Лагранжа
- Теорема Коши