logo
ОТВЕТЫ МАТАН 1-99

Теорема Лагранжа

   Если функция f(x) непрерывна на замкнутом отрезке [a, b], дифференцируема внутри него, то существует такая точка с  (a, b), что выполняется равенство

f(b) − f(a) = f '(c)·(b − a).

Д о к а з а т е л ь с т в о. Составим уравнение  хорды, проходящей через точки (a, f(a)), (b, f(b))

y = f(a) + Q·(x - a),

где есть угловой коэффициент хорды. Рассмотрим разность ординат функции и хорды

F(x) = f(x) − f(a) − Q·(x − a).

Очевидно, что функция F(x) удовлетворяет всем условиям теоремы Ролля. Поэтому на интервале (a, b) найдётся такая точка с, для которой F ' (c) = 0. То есть F ' (c) = f ' (c) − Q = 0. Откуда следует

.

И, наконец, f(b) − f(a) = f '(c)·(b − a).