Дифференцирование функций заданных параметрически
До сих пор функция записывалась в явном виде y= f(x) и в неявном F(x,y)=0. Но существует еще третий вид аналитического представления функции – это представление её в па раметрической форме в виде двух уравнений
где t – вспомогательная переменная, называемая параметром. Заметим, что функция может быть представлена в параметрической форме различными способами. Например, функция, записанная в неявном виде x2 + y2 = 1 может быть представлена в явном виде: и в параметрической форм е:
Заметим, что x2 + y2 = 1 есть уравнение окружности единичного радиуса с центром в начале координат. В первом параметрическом представлении уравнения x2 + y2 = 1 параметр t изменяется от – 1 до +1 и равен абциссе подвижной точки окружности, во втором случае параметр t изменяется от 0 до 2p и равен углу, образованному радиусом подвижной точки и осью Ox. Если функция задана в явном виде y=f(x), то всегда можно записать её в неявном виде y-f(x)=0, а также в параметрической форме
От вида F(x,y)=0 не всегда возможно перейти к виду y=f(x) или x=φ (y), так как уравнение F(x,y)=0 может оказаться неразреш имым относительно y или x . Лего перейти от параметрического представления функции к уравнению вида y=f(x). Для этого из первого уравнения x=x(t) нужно найти t=t(x), если конечно это возможно , и подставить его во второе уравнение y=y(t)
y=y[t(x)]=f(x)
От параметрического представления функции к уравнению вида F(x,y)=0 можно прийти путем исключения параметра t, если это возможно. Уравнения y=f(x) и F(x, y)=0 служат различными аналитическими представлениями одной и той же функции F[x, f(x)]=0. Параметрические уравнения
и уравнение F(x, y)=0 представляют одну и ту же функцию, если F(x(t), y(t))=0. Наконец, параметрические уравнения определяют ту же функцию, что и уравнение y=f(x), если
y(t)=f [ x(t) ].
Найдем производную функции y по x в случае, когда она задана в параметрическом виде. Для этого будем рассматривать t как функцию от x. То есть t=t(x). Тогда y=y[t(x)]. Продифференцируем y как сложную функцию от x, т.е. по формуле
и применим формулу, связывающую производные обратных функций:
Введя обозначения
,
получим
Пример.
Теперь найдем вторую производную от функции, заданной в параметрической форме. Из предидущего уравнения и определения второй производной следует, что
но
Следовательно
где
85
- § 3. Основные свойства определителей 3-го порядка.
- Тогда, используя свойство 5, а затем 4, будем иметь
- Свойства обратной матрицы
- Матричный метод решения систем линейных уравнений
- Алгоритм
- [Править] Пример
- Компланарные векторы
- Бесконечно малая величина
- [Править] Бесконечно большая величина
- Предел последовательности и функции. Теоремы о пределах
- Бесконечно малые функции
- Свойства бесконечно малых функций
- Бесконечно большие функции
- Свойства бесконечно больших функций в точке
- Пределы функции на бесконечности
- Определения Править
- Окрестностное определение Править
- Определения Править
- Определения
- [Править] Односторонний предел по Гейне
- [Править] Односторонний предел по Коши
- [Править] Односторонний предел как предел вдоль фильтра
- [Править] Обозначения
- Построение асимптот при анализе функций
- Примеры:
- Точки разрыва
- Непрерывность функции в точке
- Свойства непрерывных функций
- Свойства непрерывных функций. Непрерывность сложной функции
- Теоремы о непрерывных функциях
- Непрерывность обратной функции
- Непрерывность функций
- [Править] Доказательство
- Формулировка
- [Править] Доказательство для r
- [Править] Замечания
- Второй замечательный предел
- Натуральные логарифмы
- Свойства Править
- Дифференцирование сложной функции
- [Править] Примеры
- [Править] Свойства
- [Править] Разложение в степенной ряд
- Теорема об обратной функции.
- Теорема (о дифференцировании обратной функции)
- Примеры
- Дифференцирование функций заданных параметрически
- 36. Логарифмическое дифференцирование.
- Правила отыскания производных показательных и логарифмических функций.
- Производные обратных тригонометрических функций
- Теорема Ролля
- Геометрический смысл теоремы Ролля
- Теорема Лагранжа
- Геометрический смысл теоремы Лагранжа
- Теорема Коши