logo
ОТВЕТЫ МАТАН 1-99

Дифференцирование сложной функции

[править]

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 августа 2011; проверки требуют 2 правки.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 августа 2011; проверки требуют 2 правки.

Перейти к: навигация, поиск

Цепное правило (правило дифференцирования сложной функции) позволяет вычислить производную композиции двух и более функций на основе индивидуальных производных. Если функция f имеет производную в точке x0, а функция g имеет производную в точке y0 = f(x0), то сложная функция h(x) = g(f(x)) также имеет производную в

точке x0.

Одномерный случай

Пусть даны функции, определённые в окрестностях на числовой прямой, где y0 = f(x0), и Пусть также эти функции дифференцируемы: Тогда их композиция также дифференцируема: и её производная имеет вид:

[править] Замечание

[править] Инвариантность формы первого дифференциала

Дифференциал функции z = g(y) в точке y0 имеет вид:

где dy — дифференциал тождественного отображения :

Пусть теперь Тогда , и согласно цепному правилу:

Таким образом, форма первого дифференциала остаётся одной и той же вне зависимости от того, является ли переменная функцией или нет.

[править] Пример

Пусть Тогда функция может быть записана в виде композиции где

Дифференцируя эти функции отдельно:

получаем

[править] Многомерный случай

Пусть даны функции где y0 = f(x0), и Пусть также эти функции дифференцируемы: и Тогда их композиция тоже дифференцируема, и её дифференциал имеет вид

dh(x0) = dg(y0) * df(x0).

В частности, матрица Якоби функции h является произведением матриц Якоби функций g и f:

[править] Следствия

Для частных производных сложной функции справедливо

83

Определение

Функция является обратной к функции , если выполнены следующие тождества:

[править] Существование

Чтобы найти обратную функцию, нужно решить уравнение x = F(y) относительно y. Если оно имеет более чем один корень, то функции обратной к F не существует. Таким образом, функция f(x) обратима на интервале (a;b) тогда и только тогда, когда на этом интервале она инъективна.

Для непрерывной функции F(y) выразить y из уравнения xF(y) = 0 возможно в том и только том случае, когда функция F(y) монотонна (см. теорема о неявной функции). Тем не менее, непрерывную функцию всегда можно обратить на промежутках её монотонности. Например, является обратной функцией к x2 на , хотя на промежутке обратная функция другая: .