[Править] Пример
Для решения следующей системы уравнений:
Запишем её в виде матрицы 3×4, где последний столбец является свободным членом:
Проведём следующие действия:
К строке 2 добавим: −4 × Строку 1.
К строке 3 добавим: −9 × Строку 1.
Получим:
К строке 3 добавим: −3 × Строку 2.
Строку 2 делим на −2
К строке 1 добавим: −1 × Строку 3.
К строке 2 добавим: −3/2 × Строку 3.
К строке 1 добавим: −1 × Строку 2.
В правом столбце получаем решение:
.
10
Однородные системы линейных уравнений
Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rank A < n.
Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида:
Тогда n - r линейно независимыми вектор-решениями будут:
а любое другое решение является их линейной комбинацией. Вектор-решения образуют нормированную фундаментальную систему.
В линейном пространстве множество решений однородной системы линейных уравнений образует подпространство размерности n - r; - базис этого подпространства.
11
12
13
Едини́чныйве́ктор или орт (единичный вектор нормированного векторного пространства) — вектор, норма (длина) которого равна единице.
Единичный вектор , коллинеарный с заданным (нормированный вектор), определяется по формуле
.
В качестве базисных часто выбираются именно единичные векторы, так как это упрощает вычисления. Такие базисы называют нормированными. В том случае, если эти векторы такжеортогональны, такой базис называется ортонормированным базисом.
Углом между двумя ненулевыми векторами и называется наименьший угол ( ), на который надо повернуть один из векторов до его совпадения со вторым. Предварительно нужно привести векторы к общему началу О (рис. 7).
Рис. 7
Под углом между вектором и осью понимают угол между векторами и (рис. 8).
Рис. 8
Пусть – некоторая ось, а – вектор, произвольно распо-ложенный в пространстве. Обозначим и – проекции на ось соответственно начала А и конца В этого вектора (рис. 9). Вектор называется составляющей вектора по оси .
Рис. 9
Проекцией вектора на ось (обозначается пр ) называется длина его составляющей по этой оси, взятая со знаком «плюс», если , и со знаком «минус», если .
Очевидно, что пр , если вектор образует острый угол с осью ; пр , если этот угол тупой; пр , если .
Если известны координаты точек и на оси: , , то пр .
Нетрудно доказать свойства проекций:
1) Равные векторы имеют равные проекции на одну и ту же ось.
2) пр пр пр .
3) пр пр , .
4) пр , где – угол между вектором и осью.
Заметим, что проекция вектора на ось и его составляющая связаны соотношением сост пр .
Пример 1. При каком условии ?
Решение. Отнесем векторы и к общему началу О и построим на них параллелограмм (рис.5). Тогда – длина диагонали ОС этого параллелограмма, а – длина диагонали ВА. Диагонали параллелограмма равны, если этот параллелограмм – прямоугольник. Следовательно, , если .
. Если - векторы, по модулю равные единице и направленные по координатным осям Ox, Oy и Oz, то разложение вектора по трем координатным осям выражается формулой
(10)
где ax, ay и az - проекции вектора a на координатные оси - называются координатами вектора (если вектор имеет координаты ax, ay, az, то это обозначается так: {ax, ay, az}). Если вектор имеет начало в начале координат, а его конец A имеет координаты x, y и z, то тогда его проекции на координатные оси равны координатам его конца:
ax = x; ay = y; az = z.
В этом случае вектор называется радиусом-вектором точки A. Радиус-вектор точки обозначается обыкновенно через (см. рисунок):
(11)
а модуль радиуса-вектора точки A(x, y, z) вычисляется по формуле
(12)
Разложение вектора по базису.
Определение. Пусть – произвольный вектор, – произвольная система векторов. Если выполняется равенство
, (1)
то говорят, что вектор представлен в виде линейной комбинации данной системы векторов. Если данная система векторов является базисом векторного пространства, то равенство (1) называется разложением вектора по базису . Коэффициенты линейной комбинации называются в этом случае координатами вектора относительно базиса .
Теорема. (О разложении вектора по базису.)
Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.
Доказательство. 1) Пусть L произвольная прямая (или ось) и – базис . Возьмем произвольный вектор . Так как оба вектора и коллинеарные одной и той же прямой L, то . Воспользуемся теоремой о коллинеарности двух векторов. Так как , то найдется (существует) такое число , что и тем самым мы получили разложение вектора по базису векторного пространства .
Теперь докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства :
и , где . Тогда и используя закон дистрибутивности, получаем:
.
Так как , то из последнего равенства следует, что , ч.т.д.
2) Пусть теперь Р произвольная плоскость и – базис . Пусть произвольный вектор этой плоскости. Отложим все три вектора от какой-нибудь одной точки этой плоскости. Построим 4 прямых. Проведем прямую , на которой лежит вектор , прямую , на которой лежит вектор . Через конец вектора проведем прямую параллельную вектору и прямую параллельную вектору . Эти 4 прямые высекают параллелограмм. См. ниже рис. 3. По правилу параллелограмма , и , , – базис , – базис .
Теперь, по уже доказанному в первой части этого доказательства, существуют такие числа , что
и . Отсюда получаем:
и возможность разложения по базису доказана.
рис.3.
Теперь докажем единственность разложения по базису. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства : и . Получаем равенство
, откуда следует . Если , то , а т.к. , то и коэффициенты разложения равны: , . Пусть теперь . Тогда , где . По теореме о коллинеарности двух векторов отсюда следует, что . Получили противоречие условию теоремы. Следовательно, и , ч.т.д.
3) Пусть – базис и пусть произвольный вектор. Проведем следующие построения.
Отложим все три базисных вектора и вектор от одной точки и построим 6 плоскостей: плоскость, в которой лежат базисные векторы , плоскость и плоскость ; далее через конец вектора проведем три плоскости параллельно только что построенным трем плоскостям. Эти 6 плоскостей высекают параллелепипед:
рис.4.
По правилу сложения векторов получаем равенство:
. (1)
По построению . Отсюда, по теореме о коллинеарности двух векторов, следует, что существует число , такое что . Аналогично, и , где . Теперь, подставляя эти равенства в (1), получаем:
(2)
и возможность разложения по базису доказана.
Докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису :
и . Тогда
. (3)
Заметим, что по условию векторы некомпланарные, следовательно, они попарно неколлинеарные.
Возможны два случая: или .
а) Пусть , тогда из равенства (3) следует:
. (4)
Из равенства (4) следует, что вектор раскладывается по базису , т.е. вектор лежит в плоскости векторов и, следовательно, векторы компланарные, что противоречит условию.
б) Остается случай , т.е. . Тогда из равенства (3) получаем или
. (5)
Так как – базис пространства векторов лежащих в плоскости, а мы уже доказали единственность разложения по базису векторов плоскости, то из равенства (5) следует, что и , ч.т.д.
14
- § 3. Основные свойства определителей 3-го порядка.
- Тогда, используя свойство 5, а затем 4, будем иметь
- Свойства обратной матрицы
- Матричный метод решения систем линейных уравнений
- Алгоритм
- [Править] Пример
- Компланарные векторы
- Бесконечно малая величина
- [Править] Бесконечно большая величина
- Предел последовательности и функции. Теоремы о пределах
- Бесконечно малые функции
- Свойства бесконечно малых функций
- Бесконечно большие функции
- Свойства бесконечно больших функций в точке
- Пределы функции на бесконечности
- Определения Править
- Окрестностное определение Править
- Определения Править
- Определения
- [Править] Односторонний предел по Гейне
- [Править] Односторонний предел по Коши
- [Править] Односторонний предел как предел вдоль фильтра
- [Править] Обозначения
- Построение асимптот при анализе функций
- Примеры:
- Точки разрыва
- Непрерывность функции в точке
- Свойства непрерывных функций
- Свойства непрерывных функций. Непрерывность сложной функции
- Теоремы о непрерывных функциях
- Непрерывность обратной функции
- Непрерывность функций
- [Править] Доказательство
- Формулировка
- [Править] Доказательство для r
- [Править] Замечания
- Второй замечательный предел
- Натуральные логарифмы
- Свойства Править
- Дифференцирование сложной функции
- [Править] Примеры
- [Править] Свойства
- [Править] Разложение в степенной ряд
- Теорема об обратной функции.
- Теорема (о дифференцировании обратной функции)
- Примеры
- Дифференцирование функций заданных параметрически
- 36. Логарифмическое дифференцирование.
- Правила отыскания производных показательных и логарифмических функций.
- Производные обратных тригонометрических функций
- Теорема Ролля
- Геометрический смысл теоремы Ролля
- Теорема Лагранжа
- Геометрический смысл теоремы Лагранжа
- Теорема Коши