[Править] Обозначения
Правосторонний предел принято обозначать любым из нижеследующих способов:
Аналогичным образом для левосторонних пределов приняты обозначения:
При этом используются также сокращённые обозначения:
и для правого предела;
и для левого предела.
Асимптота (от греч. ασυμπτωτοζ - несовпадающий, не касающийся) кривой с бесконечной ветвью - прямая, к которой эта ветвь неограниченно приближается. Например, у гиперболы у = 1/x (рис. 1) асимптотами являются оси координат Ox и Oy.
Рис. 1.
Рис. 2.
Кривая может пересекать свою асимптоту (например, график затухающих колебаний, рис. 2). Кривые с бесконечными ветвями могут не иметь асимптот (так, например, её нет у параболы). Если график функции y = f(x) имеет асимптоту, определяемую уравнением y = ax + b, то эта функция может быть представлена в виде f(x) = ax + b•α(x), где α(x) → 0 при x → ∞.
- § 3. Основные свойства определителей 3-го порядка.
- Тогда, используя свойство 5, а затем 4, будем иметь
- Свойства обратной матрицы
- Матричный метод решения систем линейных уравнений
- Алгоритм
- [Править] Пример
- Компланарные векторы
- Бесконечно малая величина
- [Править] Бесконечно большая величина
- Предел последовательности и функции. Теоремы о пределах
- Бесконечно малые функции
- Свойства бесконечно малых функций
- Бесконечно большие функции
- Свойства бесконечно больших функций в точке
- Пределы функции на бесконечности
- Определения Править
- Окрестностное определение Править
- Определения Править
- Определения
- [Править] Односторонний предел по Гейне
- [Править] Односторонний предел по Коши
- [Править] Односторонний предел как предел вдоль фильтра
- [Править] Обозначения
- Построение асимптот при анализе функций
- Примеры:
- Точки разрыва
- Непрерывность функции в точке
- Свойства непрерывных функций
- Свойства непрерывных функций. Непрерывность сложной функции
- Теоремы о непрерывных функциях
- Непрерывность обратной функции
- Непрерывность функций
- [Править] Доказательство
- Формулировка
- [Править] Доказательство для r
- [Править] Замечания
- Второй замечательный предел
- Натуральные логарифмы
- Свойства Править
- Дифференцирование сложной функции
- [Править] Примеры
- [Править] Свойства
- [Править] Разложение в степенной ряд
- Теорема об обратной функции.
- Теорема (о дифференцировании обратной функции)
- Примеры
- Дифференцирование функций заданных параметрически
- 36. Логарифмическое дифференцирование.
- Правила отыскания производных показательных и логарифмических функций.
- Производные обратных тригонометрических функций
- Теорема Ролля
- Геометрический смысл теоремы Ролля
- Теорема Лагранжа
- Геометрический смысл теоремы Лагранжа
- Теорема Коши