Системы обыкновенных дифференциальных уравнений
Дано к-уравнений:
(1)
Видим, что система (1) связывает независимые переменные x и k искомых функций, причем в уравнениях искомые функции входят также в качестве производных соответствующего порядка, требуется определить функцию , удовлетворяющую системе (1). Будем предполагать, что число уравнений равно числу неизвестных функций и что система (1) решаема относительно старших производных. При сделанных оговорках можно представить в виде:
(2)
(2) называется канонической.
Систему из к уравнений можно заменить эквивалентной системой из n-уравнений, где первого порядка, разрешенных относительно производных, для этого вводят новую систему функций.
…
…
…
…
(3)
Система (3) отвлекает от разделение на группы, пронумеровав все функции в виде одного простого ряда, можно записать в общем случае в виде:
(4)
Составили систему(4) названную системой, имеющую нормальную форму Коши.
- Дифференциальные уравнения.
- Обыкновенные дифференциальные уравнения первого порядка.
- Элементарные методы интегрирования (оду первого порядка)
- I. Дифференциальное уравнение первого порядка не содержащее явно искомую функцию.
- II. Однородные дифференциальные уравнения первого порядка.
- III. Линейные дифференциальные уравнения 1-го порядка.
- IV. Уравнение Бернулли:
- V. Уравнения полных дифференциалов:
- Особые точки
- Особые решения
- Обыкновенные дифференциальные уравнения высших порядков
- Автономное уравнение второго порядка
- Линейные однородные уравнения n-го порядка
- Определитель Вронского
- Неоднородные линейные дифференциальные уравнения n-го порядка
- Метод вариации постоянных
- Линейные однородные дифференциальные уравнения с постоянными коэффициентами
- Неоднородные линейные дифференциальные уравнения с постоянными коэффициентами
- Системы обыкновенных дифференциальных уравнений
- Дифференциальные уравнения 1-го порядка
- Геометрический смысл системы уравнений первого порядка
- Первые интегралы
- Линейные системы с постоянными коэффициентами
- Устойчивость положения равновесия (устойчивость по первому приближению)
- Сравнение рядов с положительными членами
- Расходимость гармонического ряда
- Радикальный признак Коши, сходимости рядов с положительными членами
- Интегральный признак Коши сходимости рядов с положительными членами
- Знакочередующиеся ряды. Теорема Лейбница.
- Знакопеременные ряды. Абсолютная и условная сходимости знакопеременных рядов.
- Достаточный признак сходимости знакопеременного ряда
- Действия над сходящимися рядами
- Умножение абсолютно сходящихся рядов
- Функциональные ряды
- Критерии Коши равномерной сходимости функционального ряда
- Функциональная последовательность
- Свойства равномерно сходящихся функций последовательностей
- Свойство равномерно сходящихся рядов
- Признак Вейерштрасса
- Степенные ряды. Радиус сходимости
- Теорема Абеля
- Свойство сторонних рядов
- Ряды Тейлора и Маклорена
- Вычисление определенных интегралов
- Интегрирование линейных дифференциальных уравнений с помощью степенных рядов
- Ряды Фурье
- Ряды Фурье для чётных и нечётных функций
- Разложение в ряд Фурье непериодической функции
- Интеграл Фурье