Вопрос 19. Итегрирование рациональных дробей
Для интегрирования рациональной функции , где P(x) и Q(x) - полиномы, используется следующая последовательность шагов: 1. Если дробь неправильная (т.е. степень P(x) больше степени Q(x)), преобразовать ее в правильную, выделив целое выражение. 2.Разложить знаменатель Q(x) на произведение одночленов и/или несократимых квадратичных выражений; 3. Разложить рациональную дробь на простейшие дроби, используя метод неопределенных коэффициентов; 4.Вычислить интегралы от простейших дробей.
Шаг 1. Преобразование неправильной рациональной дроби
Если дробь неправильная (т.е. степень числителя P(x) больше степени знаменателя Q(x)), разделим многочлен P(x) на Q(x). Получим следующее выражение:
где - правильная рациональная дробь.
Шаг 2. Разложение знаменателя на простейшие дроби
Запишем многочлен знаменателя Q(x) в виде где квадратичные функции являются несократимыми, то есть не имеющими действительных корней.
Шаг 3. Разложение рациональной дроби на сумму простейших дробей.
Запишем рациональную функцию в следующем виде:
.
Общее число неопределенных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , ... должно быть равно степени знаменателя Q(x). Затем умножим обе части полученного уравнения на знаменатель Q(x) и приравняем коэффициенты при слагаемых с одинаковыми степенями x. В результате мы получим систему линейных уравнений относительно неизвестных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , .... Данная система всегда имеет единственное решение. Описанный алгоритм представляет собой метод неопределенных коэффициентов.
Шаг 4. Интегрирование простейших рациональных дробей.
Простейшие дроби, полученные при разложении произвольной правильной рациональной дроби, интегрируются с помощью следующих формул: 1. 2. У дробей с квадратичным знаменателем сначала необходимо выделить полный квадрат:
- Вопрос 1 Предел последовательности. Ограниченные, возрастающие, убывающие последовательности.
- Вопрос 2 Предел функции.
- Вопрос 3. Замечательные пределы.
- Вопрос 4. Непрерывные функции
- Вопрос 5 .Определение производной. Примеры.
- Вопрос 6. Таблица производных.
- Вопрос 7. Основные правила дифференцирования.
- Вопрос 8. Производные и дифференциалы высших порядков.
- Вопрос 9.Правило Лопиталя.
- Вопрос 10. Возрастание и убывание функции.
- Вопрос11 Точки экстремума функции. Необходимые условия экстремума.
- Вопрос 12. Выпуклость и вогнутость.
- Вопрос 13. Общая схема построения графика функции.
- Вопрос14 Первообразная функция. Структура множества первообразных функций
- Вопрос 15. Неопределенный интеграл его свойства. Таблица интегралов
- Вопрос 16. Замена переменной в неопределенном интеграле.Примеры.
- Вопрос 17. Интегрирование по частям в неопределенном интеграле. Примеры
- Вопрос 18. Вычислениe неопределённых интегралов, содержащих в знаменателе квадратный трёхчлен.
- Вопрос 19. Итегрирование рациональных дробей
- Вопрос 20. Разложение рациональной дроби на простейшие.
- Вопрос21 Интегрирование иррациональных выраж. Дробно- линейные иррациональности.
- Вопрос22. Интегрирование тригонометрических выражений.
- Вопрос 23. Определенный интеграл. Необходимое условие интегрируемости.
- Вопрос 24. Определение и геометрический смысл определенного интеграла
- Вопрос25 Свойства определенного интеграла
- Вопрос 26. Приложение определенного интеграла. Вычисление площади криволинейной трапеции.
- Вопрос 27. Теорема о замене переменной в определенном интеграле.
- Вопрос 28. Несобственные интегралы.
- Вопрос 29. Понятие диф ур-я, основные определения.
- Вопрос 30, Задача Коши для диф. Ур 1пор.
- Вопрос 31. Дифференциальные уравнения с разделенными переменными
- Вопрос 32. Диф. Уравнения с разделяющимися пер-ми.
- Вопрос 33. Диф. Однородные диф. Ур-я 1-го порядка.
- Вопрос34. Лин диф ур.
- Вопрос 36.Интегрируемые типы диф ур-й 2-го порядка
- Вопрос 37. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- Вопрос 38. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- Вопрос 39. Комплексные числа.
- Вопрос 40. Функции нескольких переменных. Основные определения и свойства.
- Вопрос 41. Производные от функций многих переменных.
- Вопрос 42. Исследование функций двух независимых переменных на экстремум
- Вопрос 43. . Числовые ряды. Основные понятия.
- Вопрос 44. Признак сравнения.
- Вопрос 45. Знакочеред ряды. Т Лейбница.
- Теор Признак Лейбница
- Вопрос 47. Разложение элементарных функций в ряд Маклорена
- Вопрос 48. Интегрирование дифференциальных уравнений с помощью степенных рядов.
- Вопрос 49. Решение дифференциальных уравнений с помощью степенных рядов.
- Вопрос 50. Множества. Операции над множествами