logo
matan

Вопрос 28. Несобственные интегралы.

(несобственные интегралы первого рода). Определение несобственного интеграла по бесконечному промежутку. Пусть функция f(x) определена на полуоси и интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла при называется несобственным интегралом функции f(x) от a до и обозначается . Итак, по определению, . Если этот предел существует и конечен, интеграл называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.

Аналогично интегралу с бесконечным верхним пределом интегрирования определяется интеграл в пределах от до b : и в пределах от до : . В последнем случае f(x) определена на всей числовой оси, интегрируема по любому отрезку; c - произвольная (собственная) точка числовой оси; интеграл называется сходящимся, если существуют и конечны оба входящих в определение предела. Существование конечных пределов и их сумма не зависят от выбора точки c. Очевидно следующее утверждение, которое мы сформулируем для интеграла с бесконечным верхним пределом: сходится тогда и только тогда, когда для любого c, удовлетворяющего неравенству c > a, сходится интеграл (док-во: так как при a < c < b по свойству аддитивности , и от b не зависит, то конечный предел при для интеграла в левой части существует тогда и только тогда, когда существует конечный предел для интеграла в правой части равенства)

(несобственные интегралы второго рода). Определение несобственного интеграла от неограниченной функции. Особенность на левом конце промежутка интегрирования. Пусть функция f(x) определена на полуинтервале (a, b], интегрируема по любому отрезку , и имеет бесконечный предел при . Несобственным интегралом от f(x) по отрезку называется предел . Если этот предел конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, говорят, что интеграл расходится. Особенность на правом конце промежутка интегрирования. Пусть функция f(x) определена на полуинтервале [a, b), интегрируема по любому отрезку , и имеет бесконечный предел при . Несобственным интегралом от f(x) по отрезку [a, b] называется предел . Если этот предел конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, говорят, что интеграл расходится. Особенность во внутренней точке промежутка интегрирования. Пусть функция f(x) определена на отрезке [a, b], имеет бесконечный предел при стремлении аргумента к какой-либо внутренней точке c этого отрезка: , интегрируема по любому отрезку, не содержащему точку c. Несобственным интегралом от f(x) по отрезку [a, b] называется . Интеграл сходится, если оба эти пределы существуют и конечны, в противном случае интеграл расходится.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4