logo
matan

Вопрос 19. Итегрирование рациональных дробей

Для интегрирования рациональной функции , где P(x) и Q(x) - полиномы, используется следующая последовательность шагов: 1. Если дробь неправильная (т.е. степень P(x) больше степени Q(x)), преобразовать ее в правильную, выделив целое выражение. 2.Разложить знаменатель Q(x) на произведение одночленов и/или несократимых квадратичных выражений; 3. Разложить рациональную дробь на простейшие дроби, используя метод неопределенных коэффициентов; 4.Вычислить интегралы от простейших дробей.

Шаг 1. Преобразование неправильной рациональной дроби

Если дробь неправильная (т.е. степень числителя P(x) больше степени знаменателя Q(x)), разделим многочлен P(x) на Q(x). Получим следующее выражение:

где - правильная рациональная дробь.

Шаг 2. Разложение знаменателя на простейшие дроби

Запишем многочлен знаменателя Q(x) в виде где квадратичные функции являются несократимыми, то есть не имеющими действительных корней.

Шаг 3. Разложение рациональной дроби на сумму простейших дробей.

Запишем рациональную функцию в следующем виде:

.

Общее число неопределенных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , ... должно быть равно степени знаменателя Q(x). Затем умножим обе части полученного уравнения на знаменатель Q(x) и приравняем коэффициенты при слагаемых с одинаковыми степенями x. В результате мы получим систему линейных уравнений относительно неизвестных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , .... Данная система всегда имеет единственное решение. Описанный алгоритм представляет собой метод неопределенных коэффициентов.

Шаг 4. Интегрирование простейших рациональных дробей.

Простейшие дроби, полученные при разложении произвольной правильной рациональной дроби, интегрируются с помощью следующих формул: 1. 2. У дробей с квадратичным знаменателем сначала необходимо выделить полный квадрат:

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4