Вопрос 43. . Числовые ряды. Основные понятия.
Опр. Сумма членов беск числ посл-сти - числ ряд.
Числа -чл ряда, а un – общим членом ряда. Опр. Суммы , n = 1, 2, … - частн суммы ряда. То, возможно рассм посл-сти частичных сумм ряда S1, S2, …,Sn, …
Опр. Ряд - сход-ся, если сх-ся посл-ть его частных сумм. Сумма схо ряда – предел посл-сти его частных сумм. Опр. Если посл-сть частных сумм ряда расхо-я, т.е. не имеет предела, или имеет бескон предел, то ряд –расх-ся и ему не ставят в соответствие никакой суммы. Свойства рядов.1) Схо-сть или расх-сть ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.
2) Рассмотрим два ряда и , где С – пост число.
Теор. Если ряд сх и его сумма =S, то ряд тоже сходится, и его сумма равна СS. (C 0) 3) Рассмотрим два ряда и . Суммой или разностью этих рядов будет называться ряд , где эл-ты получены в результате сложения (вычитания) исх-х эл-в с одинак номерами. Теор. Если ряды и сходятся и их суммы равны соответственно S и , то ряд тоже сходится и его сумма = S + . Разность 2х сходящихся рядов также будет сходящимся рядом. Сумма сх и расх рядов будет расх рядом. О сумме 2х расх рядов общего утверждения сделать нельзя. При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.
Yandex.RTB R-A-252273-3
- Вопрос 1 Предел последовательности. Ограниченные, возрастающие, убывающие последовательности.
- Вопрос 2 Предел функции.
- Вопрос 3. Замечательные пределы.
- Вопрос 4. Непрерывные функции
- Вопрос 5 .Определение производной. Примеры.
- Вопрос 6. Таблица производных.
- Вопрос 7. Основные правила дифференцирования.
- Вопрос 8. Производные и дифференциалы высших порядков.
- Вопрос 9.Правило Лопиталя.
- Вопрос 10. Возрастание и убывание функции.
- Вопрос11 Точки экстремума функции. Необходимые условия экстремума.
- Вопрос 12. Выпуклость и вогнутость.
- Вопрос 13. Общая схема построения графика функции.
- Вопрос14 Первообразная функция. Структура множества первообразных функций
- Вопрос 15. Неопределенный интеграл его свойства. Таблица интегралов
- Вопрос 16. Замена переменной в неопределенном интеграле.Примеры.
- Вопрос 17. Интегрирование по частям в неопределенном интеграле. Примеры
- Вопрос 18. Вычислениe неопределённых интегралов, содержащих в знаменателе квадратный трёхчлен.
- Вопрос 19. Итегрирование рациональных дробей
- Вопрос 20. Разложение рациональной дроби на простейшие.
- Вопрос21 Интегрирование иррациональных выраж. Дробно- линейные иррациональности.
- Вопрос22. Интегрирование тригонометрических выражений.
- Вопрос 23. Определенный интеграл. Необходимое условие интегрируемости.
- Вопрос 24. Определение и геометрический смысл определенного интеграла
- Вопрос25 Свойства определенного интеграла
- Вопрос 26. Приложение определенного интеграла. Вычисление площади криволинейной трапеции.
- Вопрос 27. Теорема о замене переменной в определенном интеграле.
- Вопрос 28. Несобственные интегралы.
- Вопрос 29. Понятие диф ур-я, основные определения.
- Вопрос 30, Задача Коши для диф. Ур 1пор.
- Вопрос 31. Дифференциальные уравнения с разделенными переменными
- Вопрос 32. Диф. Уравнения с разделяющимися пер-ми.
- Вопрос 33. Диф. Однородные диф. Ур-я 1-го порядка.
- Вопрос34. Лин диф ур.
- Вопрос 36.Интегрируемые типы диф ур-й 2-го порядка
- Вопрос 37. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- Вопрос 38. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- Вопрос 39. Комплексные числа.
- Вопрос 40. Функции нескольких переменных. Основные определения и свойства.
- Вопрос 41. Производные от функций многих переменных.
- Вопрос 42. Исследование функций двух независимых переменных на экстремум
- Вопрос 43. . Числовые ряды. Основные понятия.
- Вопрос 44. Признак сравнения.
- Вопрос 45. Знакочеред ряды. Т Лейбница.
- Теор Признак Лейбница
- Вопрос 47. Разложение элементарных функций в ряд Маклорена
- Вопрос 48. Интегрирование дифференциальных уравнений с помощью степенных рядов.
- Вопрос 49. Решение дифференциальных уравнений с помощью степенных рядов.
- Вопрос 50. Множества. Операции над множествами