Вопрос 5 .Определение производной. Примеры.
Если мы имеем точку х на оси, то, чтобы перейти в новую точку, мы даём аргументу приращение Δх (х→Δх). Δу=f(x+Δx)-f(x). Когда х получает приращение Δх, функция y=f(x) получает приращение Δу.
Определение.
Производной функции y=f(x) в точке x называется предел отношения Δу к Δх, когда Δх стремится к 0, если этот предел существует и конечен.
y’(x) = f’(x) = y’ =
= =
Примеры.
1) y=x2
Δy = (x+Δx)2-x2 = x2+2xΔx+Δx2-x2 = 2xΔx+Δx2
y’ =
= = = 2x+Δx) = 2x
2) y=sinx
Δy=sin(x+Δx)-sin(x)=2sin(Δx/2)*cos(x+Δx/2)
y’= = =
= = = cos(x)
Геометрический смысл производной.
Дана точка x. Рассмотрим приращение (x+Δx)
Δy=f(x+Δx)-f(x)
Производная = = =
= y’ = f’(x)
Если функция имеет в точке производную, она называется дифференцируемой в этой точке.
Пусть Δх → 0, или B→A. Каждый раз будет новая B, новый и новая хорда AB. Очевидно, что, когда B совпадёт с A, хорда совпадёт с касательной, т.е., предельное положение хорды - касательная к графику функции в точке A.
= tg 0, где фи0 – угол наклона касательной к оси X. Производная – тангенс угла, образованного касательной с осью X.
Из сказанного выше вытекает, что существование производной в точке x (или, иначе, дифференцируемость функции в точке x) означает, что в этой точке существует касательная к графику функции.
Yandex.RTB R-A-252273-3
- Вопрос 1 Предел последовательности. Ограниченные, возрастающие, убывающие последовательности.
- Вопрос 2 Предел функции.
- Вопрос 3. Замечательные пределы.
- Вопрос 4. Непрерывные функции
- Вопрос 5 .Определение производной. Примеры.
- Вопрос 6. Таблица производных.
- Вопрос 7. Основные правила дифференцирования.
- Вопрос 8. Производные и дифференциалы высших порядков.
- Вопрос 9.Правило Лопиталя.
- Вопрос 10. Возрастание и убывание функции.
- Вопрос11 Точки экстремума функции. Необходимые условия экстремума.
- Вопрос 12. Выпуклость и вогнутость.
- Вопрос 13. Общая схема построения графика функции.
- Вопрос14 Первообразная функция. Структура множества первообразных функций
- Вопрос 15. Неопределенный интеграл его свойства. Таблица интегралов
- Вопрос 16. Замена переменной в неопределенном интеграле.Примеры.
- Вопрос 17. Интегрирование по частям в неопределенном интеграле. Примеры
- Вопрос 18. Вычислениe неопределённых интегралов, содержащих в знаменателе квадратный трёхчлен.
- Вопрос 19. Итегрирование рациональных дробей
- Вопрос 20. Разложение рациональной дроби на простейшие.
- Вопрос21 Интегрирование иррациональных выраж. Дробно- линейные иррациональности.
- Вопрос22. Интегрирование тригонометрических выражений.
- Вопрос 23. Определенный интеграл. Необходимое условие интегрируемости.
- Вопрос 24. Определение и геометрический смысл определенного интеграла
- Вопрос25 Свойства определенного интеграла
- Вопрос 26. Приложение определенного интеграла. Вычисление площади криволинейной трапеции.
- Вопрос 27. Теорема о замене переменной в определенном интеграле.
- Вопрос 28. Несобственные интегралы.
- Вопрос 29. Понятие диф ур-я, основные определения.
- Вопрос 30, Задача Коши для диф. Ур 1пор.
- Вопрос 31. Дифференциальные уравнения с разделенными переменными
- Вопрос 32. Диф. Уравнения с разделяющимися пер-ми.
- Вопрос 33. Диф. Однородные диф. Ур-я 1-го порядка.
- Вопрос34. Лин диф ур.
- Вопрос 36.Интегрируемые типы диф ур-й 2-го порядка
- Вопрос 37. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- Вопрос 38. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- Вопрос 39. Комплексные числа.
- Вопрос 40. Функции нескольких переменных. Основные определения и свойства.
- Вопрос 41. Производные от функций многих переменных.
- Вопрос 42. Исследование функций двух независимых переменных на экстремум
- Вопрос 43. . Числовые ряды. Основные понятия.
- Вопрос 44. Признак сравнения.
- Вопрос 45. Знакочеред ряды. Т Лейбница.
- Теор Признак Лейбница
- Вопрос 47. Разложение элементарных функций в ряд Маклорена
- Вопрос 48. Интегрирование дифференциальных уравнений с помощью степенных рядов.
- Вопрос 49. Решение дифференциальных уравнений с помощью степенных рядов.
- Вопрос 50. Множества. Операции над множествами