logo search
matan

Вопрос 7. Основные правила дифференцирования.

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) ' = 0, (cu) ' = cu';

2) (u+v)' = u'+v';

3) (uv)' = u'v+v'u;

4) (u/v)' = (u'v-v'u)/v2;

Теорема

Если функции u=u(x) и v=v(x) имеют в точке x производные, то сумма (разность), произведение и частное этих функций также имеют производные в этой точке, и справедливы следующие формулы: 1) (u±v)/=uv/, 2) (u·v)/=u/v+v/u, 3) (vu)=v2u/vv/u .

Доказательство Из определения производной:

(u±v)/=limΔx→0Δx[u(xxv(xx)]−[u(xv(x)]=limΔx→0Δx[u(xx)−u(x)]±[v(xx)−v(x)]=limΔx→0Δxu(xx)−u(x)±limΔx→0Δxv(xx)−v(x)=uv/

(u·v)/=limΔx→0Δxu(xxv(xx)−u(xv(xv(xxv(x)= limΔx→0Δxu(xx)[v(xx)−v(x)]+limΔx→0Δxv(x)[u(xx)−u(x)]=uv/+vu/.

(vu)/=limΔx→0Δxv(xx)u(xx)−v(x)u(x)=limΔx→0Δx·v(xxv(x)u(xxv(x)−u(xv(xxu(xv(x)=v2u/vv/u. Теорема доказана.