3.7. Цилиндры второго порядка
Определение 1. Цилиндрической поверхностью называется поверхность, образованная параллельными между собой прямыми, называемыми ее образующими.
Если какая-нибудь плоскость, пересекающая все образующие цилиндрические поверхности, пересекает ее по линии Р, то эта линия называется направляющей этой цилиндрической поверхности.
Теорема. Если в пространстве введена декартова система координат и уравнение в плоскостихОу является уравнением некоторой линии Р, то это уравнение в пространстве есть уравнение цилиндрической поверхности L с направляющей линией Р, а образующие параллельны оси Oz (рис.3.19, а).
Доказательство. Точка лежит на цилиндрической поверхностиL тогда и только тогда, когда проекция точкиМ на плоскость хОу параллельно оси Oz лежит на линии Р, т.е. тогда и только тогда, когда выполняется уравнение .
Рис. 3.19
Аналогичные заключения имеют место для уравнений вида (рис. 3.19, б) и(рис.3.19, в).
Определение 2. Цилиндрические поверхности, направляющими которых есть линии второго порядка, называются цилиндрическими поверхностями второго порядка.
Существуют три типа цилиндров второго порядка: эллиптический (рис.3.20)
, (5.42)
гиперболический (рис.3.21)
, (5.43)
параболический (рис.3.22)
. (5.44)
Рис. 3.20 Рис. 3.21 Рис. 3.22
Для цилиндров, заданных уравнениями (5.42), (5.43) и (5.44), направляющими линиями являются соответственно эллипс
,
гипербола
,
парабола
,
а образующие параллельны оси Oz.
Замечание. Как мы видели, конические и цилиндрические поверхности второго порядка имеют прямолинейные образующие, причем каждая из этих поверхностей может быть образована движением прямой в пространстве.
Оказывается, что среди всех поверхностей второго порядка, кроме цилиндра и конуса, прямолинейными образующими обладают еще однополостный гиперболоид и гиперболический параболоид, причем, так же, как и в случае цилиндра и конуса, обе эти поверхности могут быть образованы движением прямой в пространстве (см. специальную литературу).
- Аналитическая геометрия
- Глава 1 линии, поверхности и их уравнения
- §1. Линия на координатной плоскости
- §2. Поверхность в геометрическом пространстве
- §3. Линия в геометрическом пространстве
- §4. Алгебраические линии и поверхности
- 4.1. Алгебраические линии на плоскости
- 4.2. Алгебраические поверхности
- §5. Полярная система координат на плоскости и в пространстве
- 5.1. Полярная система координат на плоскости
- 5.2. Полярная система координат в пространстве. Цилиндрические и сферические координаты
- Глава 2 прямая линия на плоскости
- §1. Уравнение прямой, проходящей через данную точку в данном направлении
- §2. Общее уравнение прямой
- §3. Параметрические уравнения прямой
- §4. Уравнение прямой, проходящей через две точки
- §5. Уравнение прямой в отрезках
- §6. Угловой коэффициент прямой
- §7. Уравнение прямой с угловым коэффициентом
- §8. Взаимное расположение двух прямых
- §9. Нормальное уравнение прямой
- §10. Расстояние от точки до прямой
- §11. Угол между двумя прямыми; условия коллинеарности и перпендикулярности двух прямых
- Глава 3
- §3. Условия перпендикулярности и компланарности вектора и плоскости, заданной общим уравнением
- §4. Уравнение плоскости, проходящей через три точки, не принадлежащие одной прямой
- §5. Уравнение плоскости в отрезках
- §6. Взаимное расположение двух плоскостей
- 6.1. Условие пересечения двух плоскостей и угол между ними
- 6.2. Условие параллельности двух плоскостей
- 6.3. Условие совпадения двух плоскостей
- §7. Взаимное расположение трех плоскостей
- §8. Нормальное уравнение плоскости
- §9. Приведение общего уравнения плоскости к нормальному виду
- §10. Расстояние от точки до плоскости
- Глава 4 прямая и плоскость в трехмерном пространстве
- §1. Уравнения прямой в трехмерном пространстве
- 1.1. Канонические и параметрические уравнения прямой
- 1.2. Уравнения прямой, проходящей через две точки
- 1.3. Прямая как линия пересечения двух плоскостей. Общее уравнение прямой
- §2. Угол между двумя прямыми в трехмерном пространстве
- §3. Условие принадлежности двух прямых одной плоскости
- §4. Расстояние от точки до прямой в трехмерном пространстве
- §5. Угол между прямой и плоскостью. Условие перпендикулярности прямой и плоскости
- §6. Кратчайшее расстояние между двумя скрещивающимися прямыми
- Глава 5 линии и поверхности второго порядка
- §1. Линии второго порядка, заданные каноническими уравнениями
- 1.1. Эллипс
- 1.2. Гипербола
- 1.3. Парабола
- §2. Приведение общего уравнения линии второго порядка к простейшему (каноническому) виду
- §3. Поверхности второго порядка, заданные каноническими уравненниями
- 3.1. Эллипсоид
- 3.2. Однополостный гиперболоид
- 3.3. Двуполостный гиперболоид
- 3.4. Конус второго порядка
- 3.5. Эллиптический параболоид
- 3.6. Гиперболический параболоид
- 3.7. Цилиндры второго порядка
- §4. Приведение общего уравнения поверхности второго порядка к каноническому виду
- Упражнения