§5. Угол между прямой и плоскостью. Условие перпендикулярности прямой и плоскости
Углом между прямой и плоскостью(если они не перпендикулярны) называется меньший из двух углов между этой прямой и ее ортогональной проекцией на эту плоскость. Если же прямая и плоскость перпендикулярны, то угол между ними считается равным.
Ортогональной проекцией прямой на плоскость называется прямая, образованная пересечением данной плоскости с плоскостью, проходящей через данную прямую перпендикулярно данной плоскости.
Пусть относительно декартовой прямоугольной системы координат задана плоскость общим уравнением
(4.8)
и прямая – каноническими уравнениями
. (4.9)
Обозначим угол между прямой и плоскостью через , а угол между нормальным вектором, перпендикулярным данной плоскости, и направляющим векторомданной прямой – через(рис.3.7).
Тогда (рис. 3.7, а) или(рис. 3.7, б), а. Но косинус угламежду векторамииравен
,
следовательно, синус угла между данной прямой и данной плоскостью определяется по формуле
.
Рис. 3.7
Если прямая (4.9) перпендикулярна плоскости (4.8), то направляющий вектор прямой коллинеарен вектору, перпендикулярному данной плоскости. Поэтому координаты этих векторов пропорциональны, т.е. существует такое отличное от нуля число, что
,
или
.
Обратно, если выполнены эти соотношения, то векторы иколлинеарны, т.е. направляющий вектор данной прямой коллинеарен вектору, перпендикулярному данной плоскости, следовательно, данная прямая и плоскость взаимно перпендикулярны.
Итак, для того, чтобы прямая и плоскость, заданные относительно декартовой прямоугольной системы координат, были перпендикулярны, необходимо и достаточно, чтобы координаты направляющего вектора прямой были пропорциональны коэффициентам при x, y, zв уравнении плоскости.
- Аналитическая геометрия
- Глава 1 линии, поверхности и их уравнения
- §1. Линия на координатной плоскости
- §2. Поверхность в геометрическом пространстве
- §3. Линия в геометрическом пространстве
- §4. Алгебраические линии и поверхности
- 4.1. Алгебраические линии на плоскости
- 4.2. Алгебраические поверхности
- §5. Полярная система координат на плоскости и в пространстве
- 5.1. Полярная система координат на плоскости
- 5.2. Полярная система координат в пространстве. Цилиндрические и сферические координаты
- Глава 2 прямая линия на плоскости
- §1. Уравнение прямой, проходящей через данную точку в данном направлении
- §2. Общее уравнение прямой
- §3. Параметрические уравнения прямой
- §4. Уравнение прямой, проходящей через две точки
- §5. Уравнение прямой в отрезках
- §6. Угловой коэффициент прямой
- §7. Уравнение прямой с угловым коэффициентом
- §8. Взаимное расположение двух прямых
- §9. Нормальное уравнение прямой
- §10. Расстояние от точки до прямой
- §11. Угол между двумя прямыми; условия коллинеарности и перпендикулярности двух прямых
- Глава 3
- §3. Условия перпендикулярности и компланарности вектора и плоскости, заданной общим уравнением
- §4. Уравнение плоскости, проходящей через три точки, не принадлежащие одной прямой
- §5. Уравнение плоскости в отрезках
- §6. Взаимное расположение двух плоскостей
- 6.1. Условие пересечения двух плоскостей и угол между ними
- 6.2. Условие параллельности двух плоскостей
- 6.3. Условие совпадения двух плоскостей
- §7. Взаимное расположение трех плоскостей
- §8. Нормальное уравнение плоскости
- §9. Приведение общего уравнения плоскости к нормальному виду
- §10. Расстояние от точки до плоскости
- Глава 4 прямая и плоскость в трехмерном пространстве
- §1. Уравнения прямой в трехмерном пространстве
- 1.1. Канонические и параметрические уравнения прямой
- 1.2. Уравнения прямой, проходящей через две точки
- 1.3. Прямая как линия пересечения двух плоскостей. Общее уравнение прямой
- §2. Угол между двумя прямыми в трехмерном пространстве
- §3. Условие принадлежности двух прямых одной плоскости
- §4. Расстояние от точки до прямой в трехмерном пространстве
- §5. Угол между прямой и плоскостью. Условие перпендикулярности прямой и плоскости
- §6. Кратчайшее расстояние между двумя скрещивающимися прямыми
- Глава 5 линии и поверхности второго порядка
- §1. Линии второго порядка, заданные каноническими уравнениями
- 1.1. Эллипс
- 1.2. Гипербола
- 1.3. Парабола
- §2. Приведение общего уравнения линии второго порядка к простейшему (каноническому) виду
- §3. Поверхности второго порядка, заданные каноническими уравненниями
- 3.1. Эллипсоид
- 3.2. Однополостный гиперболоид
- 3.3. Двуполостный гиперболоид
- 3.4. Конус второго порядка
- 3.5. Эллиптический параболоид
- 3.6. Гиперболический параболоид
- 3.7. Цилиндры второго порядка
- §4. Приведение общего уравнения поверхности второго порядка к каноническому виду
- Упражнения