Вопрос 31. Дифференциальные уравнения с разделенными переменными
Рассмотрим дифференциальное уравнение вида: f1(x)dx=f2(y)dy, (1) которое называется уравнением с разделенными переменными. Пусть найдено некоторое его решение y(x). При подстановке y=y(x) в дифференциальное уравнение (1) оно обратится в тождество и, интегрируя его, имеем f1(x)dx=∫f2(y)dy+C, (2) где C - произвольная постоянная. Получили уравнение (2), которому удовлетворяют решения дифференциального уравнения (1). Обратно, каждое решение y(x) уравнения (2) является и решением исходного дифференциального уравнения (1), так как если y(x) обращает в тождество уравнение (2), то, дифференцируя это тождество, получим, что y(x) обращает в тождество и уравнение (1). Следовательно, равенство (2) содержит все решения дифференциального уравнения (1) и оно называется общим интегралом уравнения (1). Из него при определенных условиях можно выразить y от x или x от y. Если надо выделить частное решение, удовлетворяющее условиям: y=y0 при x=x0, то таким решением является равенство ∫xx0f1(t)dt=∫yy0f2(t)dt, так как оно содержится в общем интеграле (2) и удовлетворяет начальным условиям.
Пример. Найти решение дифференциального уравнения xdx+ydy=0. Решение. Переменные здесь разделены, то есть коэффициенты при дифференциалах dx и dy являются соответственно функциями только от x и y, следовательно, интегралом уравнения будет ∫xdx+∫ydy=C1 или 2x2+2y2=C1 или x2+y2=2C1. Ответ. x2+y2=C2, C -- произвольная постоянная.
- Вопрос 1 Предел последовательности. Ограниченные, возрастающие, убывающие последовательности.
- Вопрос 2 Предел функции.
- Вопрос 3. Замечательные пределы.
- Вопрос 4. Непрерывные функции
- Вопрос 5 .Определение производной. Примеры.
- Вопрос 6. Таблица производных.
- Вопрос 7. Основные правила дифференцирования.
- Вопрос 8. Производные и дифференциалы высших порядков.
- Вопрос 9.Правило Лопиталя.
- Вопрос 10. Возрастание и убывание функции.
- Вопрос11 Точки экстремума функции. Необходимые условия экстремума.
- Вопрос 12. Выпуклость и вогнутость.
- Вопрос 13. Общая схема построения графика функции.
- Вопрос14 Первообразная функция. Структура множества первообразных функций
- Вопрос 15. Неопределенный интеграл его свойства. Таблица интегралов
- Вопрос 16. Замена переменной в неопределенном интеграле.Примеры.
- Вопрос 17. Интегрирование по частям в неопределенном интеграле. Примеры
- Вопрос 18. Вычислениe неопределённых интегралов, содержащих в знаменателе квадратный трёхчлен.
- Вопрос 19. Итегрирование рациональных дробей
- Вопрос 20. Разложение рациональной дроби на простейшие.
- Вопрос21 Интегрирование иррациональных выраж. Дробно- линейные иррациональности.
- Вопрос22. Интегрирование тригонометрических выражений.
- Вопрос 23. Определенный интеграл. Необходимое условие интегрируемости.
- Вопрос 24. Определение и геометрический смысл определенного интеграла
- Вопрос25 Свойства определенного интеграла
- Вопрос 26. Приложение определенного интеграла. Вычисление площади криволинейной трапеции.
- Вопрос 27. Теорема о замене переменной в определенном интеграле.
- Вопрос 28. Несобственные интегралы.
- Вопрос 29. Понятие диф ур-я, основные определения.
- Вопрос 30, Задача Коши для диф. Ур 1пор.
- Вопрос 31. Дифференциальные уравнения с разделенными переменными
- Вопрос 32. Диф. Уравнения с разделяющимися пер-ми.
- Вопрос 33. Диф. Однородные диф. Ур-я 1-го порядка.
- Вопрос34. Лин диф ур.
- Вопрос 36.Интегрируемые типы диф ур-й 2-го порядка
- Вопрос 37. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- Вопрос 38. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- Вопрос 39. Комплексные числа.
- Вопрос 40. Функции нескольких переменных. Основные определения и свойства.
- Вопрос 41. Производные от функций многих переменных.
- Вопрос 42. Исследование функций двух независимых переменных на экстремум
- Вопрос 43. . Числовые ряды. Основные понятия.
- Вопрос 44. Признак сравнения.
- Вопрос 45. Знакочеред ряды. Т Лейбница.
- Теор Признак Лейбница
- Вопрос 47. Разложение элементарных функций в ряд Маклорена
- Вопрос 48. Интегрирование дифференциальных уравнений с помощью степенных рядов.
- Вопрос 49. Решение дифференциальных уравнений с помощью степенных рядов.
- Вопрос 50. Множества. Операции над множествами