6.2. Условие параллельности двух плоскостей
Теорема.Для того, чтобы плоскости (3.12) и (3.13) были параллельны, необходимо и достаточно, чтобы соответствующие коэффициенты приx, y, zв уравнениях (3.12) и (3.13) были пропорциональны, но чтобы свободные члены не были им пропорциональны, т.е. чтобы существовало такое число, что, или чтобы определители
,
но хотя бы один из определителей
не был равен нулю.
Доказательство.Необходимым и достаточным условием параллельности плоскостей (3.12) и (3.13) является коллинеарность их нормальных векторови. Из условия коллинеарности векторов имеем, или
(3.16)
С другой стороны, необходимым и достаточным условием параллельности плоскостей (3.12) и (3.13) является несовместность системы из уравнений (3.12) и (3.13), т.е. любое решение уравнения (3.12) не является решением уравнения (3.13), – это значит, что ни одна из точек, лежащих на плоскости, заданной уравнением (3.12), не лежит на плоскости, заданной уравнением (3.13). На основании теоремы Кронекера-Капелли система несовместна, если ранги основной и расширенной матриц не одинаковы. В рассматриваемом случае все миноры второго порядка основной матрицы системы равны нулю, а среди миноров первого порядка есть отличные от нуля, так как один из коэффициентов как в уравнении (3.12), так и в уравнении (3.13) не должен быть равен нулю. Следовательно, ранг основной матрицы системы равен единице:. Поэтому, чтобы система из уравнений (3.12) и (3.13) была несовместна, ранг ее расширенной матрицыдолжен быть равен двум, а это значит, что среди миноров второго порядкадолжен быть минор, отличный от нуля. Данное условие равносильно тому, что.
- Аналитическая геометрия
- Глава 1 линии, поверхности и их уравнения
- §1. Линия на координатной плоскости
- §2. Поверхность в геометрическом пространстве
- §3. Линия в геометрическом пространстве
- §4. Алгебраические линии и поверхности
- 4.1. Алгебраические линии на плоскости
- 4.2. Алгебраические поверхности
- §5. Полярная система координат на плоскости и в пространстве
- 5.1. Полярная система координат на плоскости
- 5.2. Полярная система координат в пространстве. Цилиндрические и сферические координаты
- Глава 2 прямая линия на плоскости
- §1. Уравнение прямой, проходящей через данную точку в данном направлении
- §2. Общее уравнение прямой
- §3. Параметрические уравнения прямой
- §4. Уравнение прямой, проходящей через две точки
- §5. Уравнение прямой в отрезках
- §6. Угловой коэффициент прямой
- §7. Уравнение прямой с угловым коэффициентом
- §8. Взаимное расположение двух прямых
- §9. Нормальное уравнение прямой
- §10. Расстояние от точки до прямой
- §11. Угол между двумя прямыми; условия коллинеарности и перпендикулярности двух прямых
- Глава 3
- §3. Условия перпендикулярности и компланарности вектора и плоскости, заданной общим уравнением
- §4. Уравнение плоскости, проходящей через три точки, не принадлежащие одной прямой
- §5. Уравнение плоскости в отрезках
- §6. Взаимное расположение двух плоскостей
- 6.1. Условие пересечения двух плоскостей и угол между ними
- 6.2. Условие параллельности двух плоскостей
- 6.3. Условие совпадения двух плоскостей
- §7. Взаимное расположение трех плоскостей
- §8. Нормальное уравнение плоскости
- §9. Приведение общего уравнения плоскости к нормальному виду
- §10. Расстояние от точки до плоскости
- Глава 4 прямая и плоскость в трехмерном пространстве
- §1. Уравнения прямой в трехмерном пространстве
- 1.1. Канонические и параметрические уравнения прямой
- 1.2. Уравнения прямой, проходящей через две точки
- 1.3. Прямая как линия пересечения двух плоскостей. Общее уравнение прямой
- §2. Угол между двумя прямыми в трехмерном пространстве
- §3. Условие принадлежности двух прямых одной плоскости
- §4. Расстояние от точки до прямой в трехмерном пространстве
- §5. Угол между прямой и плоскостью. Условие перпендикулярности прямой и плоскости
- §6. Кратчайшее расстояние между двумя скрещивающимися прямыми
- Глава 5 линии и поверхности второго порядка
- §1. Линии второго порядка, заданные каноническими уравнениями
- 1.1. Эллипс
- 1.2. Гипербола
- 1.3. Парабола
- §2. Приведение общего уравнения линии второго порядка к простейшему (каноническому) виду
- §3. Поверхности второго порядка, заданные каноническими уравненниями
- 3.1. Эллипсоид
- 3.2. Однополостный гиперболоид
- 3.3. Двуполостный гиперболоид
- 3.4. Конус второго порядка
- 3.5. Эллиптический параболоид
- 3.6. Гиперболический параболоид
- 3.7. Цилиндры второго порядка
- §4. Приведение общего уравнения поверхности второго порядка к каноническому виду
- Упражнения