30. Будова простого розширення числового поля. Звільнення від ірраціональності в знаменнику дробу.
1.1. Нехай дано довільну числову множину . Очевидно, завжди знайдуться числові поля, які містять всі числа множини , наприклад, поле комплексних чисел.
Мінімальним полем , що містить дану числову множину , наз. поле, яке є перетином усіх числових полів, що містять множину .
Зрозуміло, що для будь-якої числової множини мінімальне поле завжди існує і є підполем довільного іншого поля, яке містить множину .
Нехай – деяке числове поле, і – число, яке належить цьому полю . Розглянемо мінімальне поле , яке містить і . Очевидно, є розширенням поля , яке містить , міститиме і за означенням мінімального поля.
Відомо, що мінімальне розширення поля , яка містить число наз. розширенням поля утворенням приєднанням числа , і позначають . Аналогічно можна розглядати розширення утворене приєднанням кількох чисел до поля , тобто мінімальне поле , яке містить як , так і числа .
Розширення, утворені приєднанням одного числа, наз. простим.
Приклад. ( , – рац.) просте розширення над полем рац. чисел утворена приєднанням .
1.2. Дано дріб , , – многочлена над полем , а – іррац. Корінь незвідного многочлена , .
Треба представити, що , тому .
Нехай тепер та – многочлени над , такі, що (1).
Тоді і (2).
Дії, що треба виконати:
Замінити , де – остача від ділення на ;
Знайти многочлени та , що задовольняють рівність (1);
Обчислити і подати дріб за (2).
- 1. Бінарні відношення. Рефлексивні, симетричні, транзитивні бінарні відношення. Розбиття на класи. Фактор-множина.
- 2. Натуральні числа (аксіоми Пеано). Принцип математичної індукції.
- 3.Групи. Приклади груп. Основні властивості груп.
- 4. Підгрупи. Означення та критерій. Ізоморфізм та гомоморфізм груп, властивості.
- 5.Кільце. Підкільце. Приклади кілець. Найпростіші власт. Кілець. Ізоморфізми та гомоморфізми к-ць.
- 6. Поле. Підполе. Приклади. Основні властивості полів. Поле дійсних чисел.
- 7.Поле комплексних чисел. Алгебраїчна та тригонометрична форма.
- 8. Системи лінійних рівнянь. Основні означення. Розв’язування систем лінійних рівнянь методом послідовного виключення невідомих.
- 9. Арифметичний n-вимірний векторний простір. Лінійна залежність і лін. Незал. Множини векторів. Ранг і базис скінченної множини векторів.
- 11. Означення та основні властивості визначників. Необхідна і достатня умова рівності визначника нулеві.
- 12. Знаходження оберненої матриці за допомогою елементарних перетворень та за допомогою алгебраїчних доповнень. Розв’язування матричним способом системи лінійних рівнянь.
- 13. Теорема Крамера.
- 14. Фундаментальна система розв’язків системи лінійних однорідних рівнянь. Теорема про існування фундаментальної системи розв’язків.
- 16.Базис і розмірність скінченно вимірного векторного простору. Ізоморфізм векторних просторів.
- 17. Лінійні оператори. Власні значення та власні вектори лінійного оператора.(немаєпро лінійні оператори).
- 18. Теорема про зв’язок характеристичних коренів та власних значень лінійного оператора. Зведення матриці до діагонального виду.
- 19.Теорема про ділення з остачею в кільці цілих чисел. Нсд і нск двох чисел і зв’язок між ними. Алгоритм Евкліда.
- 20. Прості числа. Нескінченність множини простих чисел. Основна теорема арифметики. Застосування канонічного розкладу чисел до знаходження нсд і нск.
- 22. Лінійні порівняння з однією змінною. Теорема про число розв’язків. Метод розв’язування лінійних порівнянь.
- 23.Застосування теорії порівнянь до виведення ознак подібності.
- 25. Многочлени над полем. Теорема про ділення з остачею. Нсд двох многочленів. Алгоритм Евкліда.
- 26. Факторіальні кільця. Факторіальність кільця многочленів над полем.
- 27. Алгебраїчна замкненість поля комплексних чисел. Канонічний розклад многочленна над полем комплексних чисел та його єдиність.
- 28. Многочлени з дійсними коефіцієнтами. Спряженість уявних коренів таких многочленів. Незвідні над полем дійсних чисел многочлени та канонічний розклад многочленів над полем дійсних чисел.
- 30. Будова простого розширення числового поля. Звільнення від ірраціональності в знаменнику дробу.