logo
gotovo

22. Лінійні порівняння з однією змінною. Теорема про число розв’язків. Метод розв’язування лінійних порівнянь.

Озн. Порівняння першого степеня з однією невідомою величиною називається .(1) називають розв’язком рівняння, якщо при його підстановці рівняння перетворюється в істинне числове порівняння.Теорема1:Якщо am-взаємнопрості то рівність(1) маэ і притому єдиний розв’язок.

Д-ня: Розглянемо повну систему найменших невід’ємних лишків. ПСННЛ(modm)={0,1,2…m-1}так як am-взаємнопрості, то згідно теореми про ПСЛ, якщо х пробігає ПСЛ то ax-b теж пробігає ПСЛ причому лише один раз ax-b буде порівнюватись з 0(modm) .

Теорема2:Якщо найбільше CD(a,m)=d i то(1)не має розв’язків.

Д-ня: (від супротивного) з даної нерівності так, як ,а це суперечить умові.

Теорема3:Якщо НСД(a,m)=d і то рівність має d- розв’язків за mod(m).НСД(a,m)=d

так як взаємно прості, то згідно Теореми1 порівняння має єдиний розв’язок. цей клас розбиваємо за (modm), які будуть розв’язками порівняння. Основними методами розв’язування порівнянь є:

1.Безпосередня перевірка лишків ПСННЛ. Цей метод використовується тоді коли(modm)порівняно невелике число.

2.полягає в тому, щоб використати властивість порівнянь одержати коефіцієнт х.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4