12. Знаходження оберненої матриці за допомогою елементарних перетворень та за допомогою алгебраїчних доповнень. Розв’язування матричним способом системи лінійних рівнянь.
Озн. 1. Квадратна матриця А-1 n-го пор. наз. оберненою до квадратної матриці А n-го порядку, якщо А·А-1=А-1·А=Е
Озн. 2. Елементарною матрицею n-го порядку наз. матриця, яка утв-ться з одиничної матриці n-го порядку за допом. елементарного (еквівалентного) перетворення.
До еквівалентних перетворень матриці відносяться:
1) заміна місцями двох будь-яких рядків;
2) множення рядка на будь-яке число відмінне від 0;
3) додавання до будь-якого рядка іншого рядка помноженого на відмінне від 0 число.
Теорема1. Заміну місцями двох рядків матриці можна замінити множенням матриці А зліва на відповідну елементарну матрицю, яка одержується з одиничної матриці заміною місцями аналогічних рядків.
Доведення:
Т. 2. Множення і-го рядка м-ці А на ненульове число С еквівал. множенню м-ці А зліва на елементар-ну м-цю, яка отримується з одиничної матриці множенням і-го рядка на дане число С.
Доведення: Помножимо третій рядок матриці А на ненульове число С і помножимо одиничну матрицю Е на ненульове число С. Доведемо, що
Т. 3. Додавання і-го рядка до j-го рядка, помноженого на ненульове число С еквівалентне множеню матриці А зліва на елементарну м-цю, яка отримується з одиничної матриці додаванням до і-го рядка j-го рядка, помноженого на ненульове число С.
Доведення: розглянемо матрицю А і додамо наприклад до другого рядка перший рядок помножений на ненульове число С.
Аналогічні теореми справджуються і з перетвореннями стовпців, лише множення на елементарні матриці проводиться справа.
Т.4. Якщо за допомогою елементарних перетворень рядків (стовпців) квадратну м-цю А можна перевести в одиничну м-цю, то за допомогою цих самих елементарних перетворень одинична м-ця Е перейде в матрицю А-1, якщо буде оберненою до матриці А.
Доведення: Нехай за допом. ел-арних перетв. а1, а2, … , аk рядків м-ці квадр. м-ця А переводиться в одиничну м-цю Е. Згідно т-ем 1-3 перетв-ння а1 перев-ть м-цю А в ·А, перетв. а2 перев. м-цю ·А в ( ·А) і т. д. аk перев. м-цю ( … ( ·А)) в матрицю ·( … А)=Е. Звідси ( … )(А·А-1)=Е·А-1 або ( … А)А-1=А-1, => … У=А-1.
З останньої рівності випливає, що елементарні перетворення а1, а2, … , аk рядків матриці переводить одиничну матрицю Е в А-1.
Зауваження. На практиці обернену матрицю шукають так: записують прямокутну матрицю (А/Е) і за допомогою елем. пертвор. зводять її до (Е/А-1).
Т 5. Якщо визначник квадратної матриці А n-го порядку не дорівнює нулеві, то вона має обернену матрицю А-1, причому
А-1= , Аij – алгебраїчні доповн. до елемента аij матриці А.
Доведення: Позначимо шукану обернену матрицю через Х={xij}ni,j=1 . Тоді АХ=Е або =
Перемножимо матриці лівої частини та прирівняємо відповідні елементи матриць лівої та правої частини. Отримаємо:
Одержана система n2 рівнянь з n2 невідомими розкладається на n підсистем, кожна з яких складається з n рівнянь і n невідомих, причому визначник основної матриці кожної з підсистем є det A0. Згідно теореми Крамера кожна з n систем має і притому єдиний розв’язок. Знайдемо вираз для хij.
Обчислимо, наприклад,
= = =
Аналогічно знаходимо решту хij. Безпосереднім множенням матриці А на знайдену переконуємося в тому, що знайдена м-ця обернена до м-ці А.
Розглянемо систему лінійних рівнянь:
Нехай А= , Х= , В=
Тоді систему лінійних рівнянь можна записати у матричній формі А·Х=В
Якщо матриця А має обернену матрицю А-1, то помноживши обидві частини матричного рівняння зліва на А-1, отримаємо Х=А-1·В
Безпосередньою перевіркою переконуємося, що Х=А-1·В є єдиним розв’язком лінійної системи рівнянь
Yandex.RTB R-A-252273-3
- 1. Бінарні відношення. Рефлексивні, симетричні, транзитивні бінарні відношення. Розбиття на класи. Фактор-множина.
- 2. Натуральні числа (аксіоми Пеано). Принцип математичної індукції.
- 3.Групи. Приклади груп. Основні властивості груп.
- 4. Підгрупи. Означення та критерій. Ізоморфізм та гомоморфізм груп, властивості.
- 5.Кільце. Підкільце. Приклади кілець. Найпростіші власт. Кілець. Ізоморфізми та гомоморфізми к-ць.
- 6. Поле. Підполе. Приклади. Основні властивості полів. Поле дійсних чисел.
- 7.Поле комплексних чисел. Алгебраїчна та тригонометрична форма.
- 8. Системи лінійних рівнянь. Основні означення. Розв’язування систем лінійних рівнянь методом послідовного виключення невідомих.
- 9. Арифметичний n-вимірний векторний простір. Лінійна залежність і лін. Незал. Множини векторів. Ранг і базис скінченної множини векторів.
- 11. Означення та основні властивості визначників. Необхідна і достатня умова рівності визначника нулеві.
- 12. Знаходження оберненої матриці за допомогою елементарних перетворень та за допомогою алгебраїчних доповнень. Розв’язування матричним способом системи лінійних рівнянь.
- 13. Теорема Крамера.
- 14. Фундаментальна система розв’язків системи лінійних однорідних рівнянь. Теорема про існування фундаментальної системи розв’язків.
- 16.Базис і розмірність скінченно вимірного векторного простору. Ізоморфізм векторних просторів.
- 17. Лінійні оператори. Власні значення та власні вектори лінійного оператора.(немаєпро лінійні оператори).
- 18. Теорема про зв’язок характеристичних коренів та власних значень лінійного оператора. Зведення матриці до діагонального виду.
- 19.Теорема про ділення з остачею в кільці цілих чисел. Нсд і нск двох чисел і зв’язок між ними. Алгоритм Евкліда.
- 20. Прості числа. Нескінченність множини простих чисел. Основна теорема арифметики. Застосування канонічного розкладу чисел до знаходження нсд і нск.
- 22. Лінійні порівняння з однією змінною. Теорема про число розв’язків. Метод розв’язування лінійних порівнянь.
- 23.Застосування теорії порівнянь до виведення ознак подібності.
- 25. Многочлени над полем. Теорема про ділення з остачею. Нсд двох многочленів. Алгоритм Евкліда.
- 26. Факторіальні кільця. Факторіальність кільця многочленів над полем.
- 27. Алгебраїчна замкненість поля комплексних чисел. Канонічний розклад многочленна над полем комплексних чисел та його єдиність.
- 28. Многочлени з дійсними коефіцієнтами. Спряженість уявних коренів таких многочленів. Незвідні над полем дійсних чисел многочлени та канонічний розклад многочленів над полем дійсних чисел.
- 30. Будова простого розширення числового поля. Звільнення від ірраціональності в знаменнику дробу.