logo search
Линейная алгебра методичка

Уравнения прямой (различные виды). Параметрические уравнения прямой.

Направляющим вектором прямой называется любой вектор параллельный данной прямой.

Пусть на прямой дана точка с координатами (,) и дан направляющий вектор прямой= (,).

Пусть точка М (x, y) – произвольная точка прямой, тогда вектор коллинеарен вектору.

По признаку коллинеарности эти векторы пропорциональны.

Обозначим коэффициент пропорциональности tи назовем параметром.

Тогда получим =t· .

Запишем это равенство в координатной форме:

() =t (,).

Следовательно,

(1)

– параметрические уравнения прямой на плоскости.

По аналогии, в пространстве получим: