Линейная алгебра методичка
Выражение векторного и смешанного произведения через координаты перемножаемых векторов.
Пусть = ();= ();
‒ формула для вычисления смешанного произведения.
Пример:
Дано: ABCD – тетраэдр. A (– 2; 3; – 4) B (3; – 1; 5) C (4; – 4; 2) D (5; 7; 1) Найти: 1) ABC 2) Уравнение BCD 3) VABCD |
Решение:
1)
2)
│: 2
–уравнение BCD.
3)
кубических единиц.
Теорема. Признак компланарности векторов.
Для того чтобы векторы , были компланарны, необходимо и достаточно чтобы ихсмешанное произведение равнялось нулю, т.е.
,
т.к. объем Vпараллелепипеда = 0 (векторы , в одной плоскости).
Пример: Проверить компланарны ли три вектора
= {1; 1; 1}, = {1; 3; 1},= {2; 2; 2}.
Решение: найдем смешанное произведение векторов.
· [×] =
Ответ: вектора компланарны, так как их смешанное произведение равно нулю.
Yandex.RTB R-A-252273-3
Содержание
- Мультимедийные лекции
- Содержание
- Основные сведения о матрицах.
- Виды матриц
- Операции над матрицами и их свойства.
- Правило Саррюса (правило треугольника).
- Теорема Лапласа
- Свойства определителей.
- Вырожденные и невырожденные матрицы, обратная матрица.
- Решение матричных уравнений.
- Ранг матрицы, нахождение ранга матрицы.
- Элементарные преобразования матрицы.
- Системы линейных алгебраических уравнений слу (Основные понятия и определения).
- Методы решения систем линейных уравнений.
- 1) Метод обратной матрицы (матричный метод) решения систем n линейных уравнений с n неизвестными.
- 2) Правило Крамера решения систем n – линейных уравнений с n – неизвестными.
- Метод Гаусса решения систем линейных уравнений.
- Исследование систем линейных уравнений. Теорема Кронекера - Капелли, базисные решения.
- Системы линейных однородных уравнений. Исследование решений. Фундаментальная система решений.
- Модель Леонтьева многоотраслевой экономики. Продуктивные модели Леонтьева.
- Балансовые соотношения
- Линейная модель многоотраслевой экономики
- Векторы (основные понятия и определения).
- Сложение векторов
- Разность векторов
- Линейные операции над векторами. Направляющие косинусы.
- Прямоугольный базис.
- Декартова прямоугольная система координат в пространстве.
- Прямоугольные координаты вектора (точки).
- Разложение вектора по базису.
- Формулы для нахождения длины вектора, расстояния между точками и угла между векторами.
- Векторное произведение векторов (геометрический смысл, свойства).
- Свойства векторного произведения.
- Выражение векторного произведения через координаты.
- Смешанное произведение векторов (геометрический смысл, свойства).
- Выражение векторного и смешанного произведения через координаты перемножаемых векторов.
- Уравнение плоскости, проходящей через три данные точки.
- Понятие векторного (линейного) пространства. Вектор вn‒ мерном пространстве.
- Размерность и базис векторного пространства.
- Линейная оболочка и ее свойства.
- Свойства линейной оболочки
- Евклидово пространство.
- Ортогональный и ортонормированный базис.
- Переход к новому базису.
- Линейные операторы.
- Собственные векторы и собственные значения линейного оператора (матрицы).
- Квадратичные формы.
- Линейная модель обмена (международной торговли).
- Уравнения прямой (различные виды). Параметрические уравнения прямой.
- Уравнение прямой проходящей через две данные точки.
- Угловой коэффициент прямой. Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом.
- Уравнение прямой, проходящей через данную точку с данным нормальным вектором (нормалью).
- Общее уравнение прямой.
- Формула угла между прямыми.
- Условия параллельности и перпендикулярности прямых.
- Формула расстояния от точки до прямой.
- Комплексные числа. Алгебраическая форма комплексного числа.
- Действия над комплексными числами в алгебраической форме.