Переход к новому базису.
Пусть в пространстве R заданы два базиса: старый ,, … ,и новый,, … ,.
Выразим связь между базисами, разложив векторы нового базиса по векторам старого базиса:
Связь между базисами задается матрицей , записанной в транспонированном виде:
А =
Координаты вектора в новом базисе находятся с помощью обратной матрицы .
где – матрица перехода от старого базиса к новому;
Пример:
Дано | Решение |
(1; 1; 0), (1; –1; 1), (–3; 5; –6), (4; –4; 5). В базисе , ,. | 1) Докажем, что векторы и являются линейно независимыми, т. е. образуют базис. Для этого составим их линейную комбинацию и приравняем ее к нулевому вектору. · +·+= . Получим: |
Доказать, что векторы и сами образуют базис и найти координаты векторав этом базисе. | |
Следовательно, получим однородную систему: ∆ = = 6– 3 + 0 – 0 – 5 + 6 = 4 0 Следовательно,система имеет единственное решение и– линейно независимые, т. е. образуют базис. 2) Разложим векторы нового базиса по векторам старого базиса. . Координаты вектора . ; ; ; ; ; ; ; ; ; ; Ã=
|
Yandex.RTB R-A-252273-3
- Мультимедийные лекции
- Содержание
- Основные сведения о матрицах.
- Виды матриц
- Операции над матрицами и их свойства.
- Правило Саррюса (правило треугольника).
- Теорема Лапласа
- Свойства определителей.
- Вырожденные и невырожденные матрицы, обратная матрица.
- Решение матричных уравнений.
- Ранг матрицы, нахождение ранга матрицы.
- Элементарные преобразования матрицы.
- Системы линейных алгебраических уравнений слу (Основные понятия и определения).
- Методы решения систем линейных уравнений.
- 1) Метод обратной матрицы (матричный метод) решения систем n линейных уравнений с n неизвестными.
- 2) Правило Крамера решения систем n – линейных уравнений с n – неизвестными.
- Метод Гаусса решения систем линейных уравнений.
- Исследование систем линейных уравнений. Теорема Кронекера - Капелли, базисные решения.
- Системы линейных однородных уравнений. Исследование решений. Фундаментальная система решений.
- Модель Леонтьева многоотраслевой экономики. Продуктивные модели Леонтьева.
- Балансовые соотношения
- Линейная модель многоотраслевой экономики
- Векторы (основные понятия и определения).
- Сложение векторов
- Разность векторов
- Линейные операции над векторами. Направляющие косинусы.
- Прямоугольный базис.
- Декартова прямоугольная система координат в пространстве.
- Прямоугольные координаты вектора (точки).
- Разложение вектора по базису.
- Формулы для нахождения длины вектора, расстояния между точками и угла между векторами.
- Векторное произведение векторов (геометрический смысл, свойства).
- Свойства векторного произведения.
- Выражение векторного произведения через координаты.
- Смешанное произведение векторов (геометрический смысл, свойства).
- Выражение векторного и смешанного произведения через координаты перемножаемых векторов.
- Уравнение плоскости, проходящей через три данные точки.
- Понятие векторного (линейного) пространства. Вектор вn‒ мерном пространстве.
- Размерность и базис векторного пространства.
- Линейная оболочка и ее свойства.
- Свойства линейной оболочки
- Евклидово пространство.
- Ортогональный и ортонормированный базис.
- Переход к новому базису.
- Линейные операторы.
- Собственные векторы и собственные значения линейного оператора (матрицы).
- Квадратичные формы.
- Линейная модель обмена (международной торговли).
- Уравнения прямой (различные виды). Параметрические уравнения прямой.
- Уравнение прямой проходящей через две данные точки.
- Угловой коэффициент прямой. Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом.
- Уравнение прямой, проходящей через данную точку с данным нормальным вектором (нормалью).
- Общее уравнение прямой.
- Формула угла между прямыми.
- Условия параллельности и перпендикулярности прямых.
- Формула расстояния от точки до прямой.
- Комплексные числа. Алгебраическая форма комплексного числа.
- Действия над комплексными числами в алгебраической форме.