Линейная алгебра методичка
Правило Саррюса (правило треугольника).
Пример 1:
= – 2×1× (–5) + 5×4×(– 4) + 3×2×(– 3) – (– 3) ×1× (– 4) – 4×2×
(– 2) – 5×3 × (– 5) = 10 – 80 –18 –12 +16 +75 = – 9.
Пример 2:
= 45 + 8 ‒ 24 ‒ 60 + 6 ‒ 24 = ‒ 49.
Минором Mij элемента aijквадратной матрицы n ‒ го порядка называется определитель (n ‒ 1) ‒ го порядка, полученный из данной матрицы вычеркиванием i ‒ й строки и j ‒ го столбца, на пересечении которых стоит данный элемент.
Пример:
;
M11 = = 15 + 2 = 17;
M12 = = – 6 – 6 = –12; и т. д. всего 9 миноров.
Алгебраическим дополнением Aijэлемента aij квадратной матрицы называется его минор, взятый со знаком (‒1)i+j.
Пример:
А 11 = (–1)1+1 × M11 = 17.
А 12 = (–1)1+2 × M12 = ‒ 1×M12 = 12.
А 13 = (–1)1+3 × = 4 ‒ 30= – 26; и т.д.
Yandex.RTB R-A-252273-3
Содержание
- Мультимедийные лекции
- Содержание
- Основные сведения о матрицах.
- Виды матриц
- Операции над матрицами и их свойства.
- Правило Саррюса (правило треугольника).
- Теорема Лапласа
- Свойства определителей.
- Вырожденные и невырожденные матрицы, обратная матрица.
- Решение матричных уравнений.
- Ранг матрицы, нахождение ранга матрицы.
- Элементарные преобразования матрицы.
- Системы линейных алгебраических уравнений слу (Основные понятия и определения).
- Методы решения систем линейных уравнений.
- 1) Метод обратной матрицы (матричный метод) решения систем n линейных уравнений с n неизвестными.
- 2) Правило Крамера решения систем n – линейных уравнений с n – неизвестными.
- Метод Гаусса решения систем линейных уравнений.
- Исследование систем линейных уравнений. Теорема Кронекера - Капелли, базисные решения.
- Системы линейных однородных уравнений. Исследование решений. Фундаментальная система решений.
- Модель Леонтьева многоотраслевой экономики. Продуктивные модели Леонтьева.
- Балансовые соотношения
- Линейная модель многоотраслевой экономики
- Векторы (основные понятия и определения).
- Сложение векторов
- Разность векторов
- Линейные операции над векторами. Направляющие косинусы.
- Прямоугольный базис.
- Декартова прямоугольная система координат в пространстве.
- Прямоугольные координаты вектора (точки).
- Разложение вектора по базису.
- Формулы для нахождения длины вектора, расстояния между точками и угла между векторами.
- Векторное произведение векторов (геометрический смысл, свойства).
- Свойства векторного произведения.
- Выражение векторного произведения через координаты.
- Смешанное произведение векторов (геометрический смысл, свойства).
- Выражение векторного и смешанного произведения через координаты перемножаемых векторов.
- Уравнение плоскости, проходящей через три данные точки.
- Понятие векторного (линейного) пространства. Вектор вn‒ мерном пространстве.
- Размерность и базис векторного пространства.
- Линейная оболочка и ее свойства.
- Свойства линейной оболочки
- Евклидово пространство.
- Ортогональный и ортонормированный базис.
- Переход к новому базису.
- Линейные операторы.
- Собственные векторы и собственные значения линейного оператора (матрицы).
- Квадратичные формы.
- Линейная модель обмена (международной торговли).
- Уравнения прямой (различные виды). Параметрические уравнения прямой.
- Уравнение прямой проходящей через две данные точки.
- Угловой коэффициент прямой. Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом.
- Уравнение прямой, проходящей через данную точку с данным нормальным вектором (нормалью).
- Общее уравнение прямой.
- Формула угла между прямыми.
- Условия параллельности и перпендикулярности прямых.
- Формула расстояния от точки до прямой.
- Комплексные числа. Алгебраическая форма комплексного числа.
- Действия над комплексными числами в алгебраической форме.