logo
Линейная алгебра методичка

Исследование систем линейных уравнений. Теорема Кронекера - Капелли, базисные решения.

Теорема 1(Кронекера-Капелли). Система m – линейных уравнений с n – неизвестными совместна только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

r (A) = r (Aв)

Пример:

│А│= = 65 0, r (А) = 3;

AB= =r (AB) ≤ 3, так как

= ‒ 8 + 45 + 144 ‒ 40 + 72 ‒ 18 = 195 =r (AB) = 3 =

r(A) = r (AB) => по теореме Кронекера ‒ Капелли система совместна.

Теорема 2. Если ранг матрицы совместной системы равен числу неизвестных, т. е. r(A) = n, то система имеет единственное решение.

Если ранг матрицы системы меньше числа неизвестных, т. е. r (A) < n, то система имеет множество решений.

Тогда переменные х1, х2, …, хr называются базисными, если минор, составленный из коэффициентов при этих неизвестных  0, остальные (nr) – неизвестных называются свободными.

Пример: найти базисное решение системы уравнений.

Решение:

х1, х2, х3 – базисные, х4 – свободная.

Пусть х4= C = const; х3= 2, тогда

2 х2+ 2 + 2 C= 0 | · 2

х2= – C – 1

х1C – 1 + 2 + C= 2;

х1= 1

Ответ:

х1= 1;

х2= – C – 1;

х3 = 2;

х4= C.

Найдем частное решение:

Пусть C = 1, тогда

х1= 1;

х2= – 2;

х3 = 2;

х4= 1.

Проверка:

Подставим значения х1, х2, х3, и х4 в систему уравнений

,

Получим

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4