2.4. Распределение перепадов давлений по высоте помещения
Разность между наружным и внутренним давлениями на разной высоте может быть различна. Другими словами, перепад давлений изменяется с высотой.
Рассмотрим сначала область, лежащую выше ПРД. На высоте, соответствующей координате у (см. рис. 2.2), разность давлений определим с помощью уравнений (2.3) и (2.8). Из этих уравнений следует
, (2.11)
где Δp - перепад давлений в области у> у*.
Изменение этой разности давлений при увеличении высоты на малую величину dy получим, дифференцируя уравнение (2.11):
, (2.12)
Чтобы получить распределение перепадов давлений по высоте помещения над ПРД, проинтегрируем правую часть уравнения (2.12) по у в пределах от у = у* до текущего значения у, а левую - в пределах от Δр = О (так как при у = у* перепад Δр = О ) до текущего значения Δр
, (2.13)
В области, лежащей ниже ПРД, распределение перепадов давлений определяется аналогичным образом. Перепад давлений в этой области определяется как разность наружного и внутреннего давлений, т.е.
, (2.14)
где δр - перепад давлений в области у<у*,.
После математических операций, аналогичных использованным выше, получается следующая формула, описывающая распределение перепадов давлений по высоте помещения под ПРД (т.е. в области у < у*,):
, (2.15)
Знак "минус" перед правой частью в уравнении (2.15) означает, что перепад давлений δр действует в направлении, противоположном перепаду давлений Δр.
Абсолютное значение перепада давлений ниже ПРД определяется по формуле
, (2.15а)
- Глава 1. Интегральная математическая модель пожара в помещении................14
- Глава 6. Дифференциальные (полевые) математические модели пожара в помещении..................................................................................................................88
- Введение. Общие сведения о методах прогнозирования опасных факторов пожара в помещении
- Глава 1. Интегральная математическая модель пожара в помещении
- Исходные положения и основные понятия интегрального метода термодинамического анализа пожара
- 1.2. Дифференциальные уравнения пожара
- Глава 2. Дополнительные уравнения интегральной математической модели пожара для расчета расходов уходящих газов и поступающего через проемы воздуха
- 2.1. Исходные положения
- 2.2. Распределение давлений по высоте помещения
- 2.3. Плоскость равных давлений и режимы работы проема
- 2.4. Распределение перепадов давлений по высоте помещения
- 2.5. Формулы для расчета расхода газа, выбрасываемого через прямоугольный проем
- 2.6. Формулы для расчета расхода воздуха, поступающего через прямоугольный проем
- 2.7. Влияние ветра на газообмен
- Глава 3. Дополнительные уравнения интегральной модели пожара для расчета теплового потока в ограждения и скорости выгорания горючих материалов
- 3.1. Приближенная оценка величины теплового потока в ограждения
- 3.2. Эмпирические методы расчета теплового потока в ограждения
- 3.3. Полуэмпирические методы расчета теплового потока в ограждения
- 3.4. Методы расчета скорости выгорания горючих материалов и скорости тепловыделения
- Глава 4. Математическая постановка и методы решения задачи о прогнозировании офп на основе интегральной математической модели пожара в помещении
- 4.1. Классификация интегральных моделей пожара
- 4.2. Интегральная математическая модель пожара для исследования динамики офп и ее численная реализация
- 4.3. Интегральная математическая модель начальной стадии пожара и расчет критической продолжительности пожара
- 4.3.1. Постановка задачи и ее решение
- 4.3.2. Расчет критических значений средних параметров состояния среды в помещении
- 4.3.3. Расчет коэффициента теплопоглощения (коэффициента
- Глава 5. Зонная математическая модель пожара в помещении
- 5.1. Схема трехзонной модели пожара:
- Глава 6. Дифференциальные (полевые) математические модели пожара в помещении математическая модель расчета тепломассообмена при пожаре в помещении
- 6.1. Особенности и упрощения термогазодинамической картины пожара
- 6.2.Структура полевой модели расчета тепломассообмена
- Основные уравнения
- 6.3. Основные уравнения полевой модели
- 6.4. Уравнения для расчета процесса прогрева строительных конструкций
- 6.5. Расчет турбулентного тепломассообмена
- 6.5.6. Уравнения (6.17)-(6.23) позволяют определить коэффициенты турбулентной вязкости, теплопроводности и диффузии, входящие в уравнения полевой модели (6.2)-(6.6).
- 6.6. Моделирование радиационного теплообмена
- 6.7. Расчет процесса выгорания горючей нагрузки
- 6.8. Моделирование горения
- 6.9. Условия однозначности
- 6.10. Моделирование действий систем пожаротушения
- 6.11. Моделирование действий систем механической вентиляции и дымоудаления
- 6.12. Метод численного решения дифференциальных уравнений
- Заключение
- Литература
- 129366, Москва, ул. Б. Галушкина, 4