2.3. Плоскость равных давлений и режимы работы проема
Установленные законы распределения давлений внутри и снаружи помещения позволяют найти положение горизонтальной плоскости, на которой наружное давление равно давлению внутри помещения. Эту плоскость называют плоскостью равных давлений (ПРД). Положение этой плоскости определяется координатой, которую обозначают символом у*,
Чтобы найти значение координаты ПРД, воспользуемся уравнениями (2.3) и (2.8). Положив в этих уравнениях значение координаты равным У* и приравняв правые части этих уравнений, получим следующее выражение:
, (2.9)
После несложных преобразований из уравнения (2.9) получается следующая формула для определения координаты ПРД:
, (2.10)
Из формулы (2.10) следует, что положение ПРД зависит от параметров состояния газовой среды в помещении. В процессе развития пожара параметры состояния среды внутри помещения изменяются. Следовательно, в процессе развития пожара изменяется положение ПРД, т.е. изменяется значение координаты у*.
В зависимости от расположения проемов относительно ПРД возможны три разных режима "работы" этих проемов. Если проем целиком расположен выше ПРД, то через этот проем будут только выбрасываться газы из помещения. Этот режим называется режимом "выталкивания". Если проем целиком расположен ниже ПРД, то через этот проем будет только поступать воздух из окружающей среды. Этот режим называется режимом "всасывания" воздуха. Наконец, если ПРД проходит через проем, разделяя его на две части, то в этом случае через верхнюю часть проема выталкиваются газы из помещения, а через нижнюю часть всасывается свежий воздух. Этот режим называется "смешанным". В процессе развития пожара может происходить смена режимов работы всех проемов, так как положение ПРД в течение времени изменяется.
Вышесказанное можно пояснить с помощью рис. 2.2. На этом рисунке дана схема помещения с тремя проемами, расположенными в трех уровнях. Рядом со схемой помещения представлена эпюра давлений, которая соответствует условиям в некоторый момент процесса развития пожара. Распределения давлений внутри и снаружи помещения изображаются отрезками прямых линий в соответствии с выше установленными законами (2.3) и (2.8). Угол наклона линии, изображающей распределение наружных давлений, больше, чем угол наклона линии, изображающей распределение давлений внутри помещения, потому что при пожаре плотность среды внутри помещения меньше плотности наружного воздуха, т.е. rm < rа. В точке, где эти линии пересекаются, расположена ПРД. Этому расположению ПРД соответствует координата у*. На всех уровнях, расположенных выше ПРД, внутреннее давление больше наружного. Разность этих давлений на эпюре изображена стрелками, направленными "из помещения". На всех уровнях, расположенных ниже ПРД, внутреннее давление меньше, наружного. Разность этих давлений изображена на эпюре стрелками, направленными "в помещение".
При указанном на рис. 2.2 расположении ПРД через весь проем, находящийся выше ПРД, будет иметь место только выброс газов из помещения. В то же время через проем, целиком расположенный ниже ПРД, будет иметь место только поступление свежего воздуха в помещение. Средний проем при этом будет работать в смешанном режиме.
- Глава 1. Интегральная математическая модель пожара в помещении................14
- Глава 6. Дифференциальные (полевые) математические модели пожара в помещении..................................................................................................................88
- Введение. Общие сведения о методах прогнозирования опасных факторов пожара в помещении
- Глава 1. Интегральная математическая модель пожара в помещении
- Исходные положения и основные понятия интегрального метода термодинамического анализа пожара
- 1.2. Дифференциальные уравнения пожара
- Глава 2. Дополнительные уравнения интегральной математической модели пожара для расчета расходов уходящих газов и поступающего через проемы воздуха
- 2.1. Исходные положения
- 2.2. Распределение давлений по высоте помещения
- 2.3. Плоскость равных давлений и режимы работы проема
- 2.4. Распределение перепадов давлений по высоте помещения
- 2.5. Формулы для расчета расхода газа, выбрасываемого через прямоугольный проем
- 2.6. Формулы для расчета расхода воздуха, поступающего через прямоугольный проем
- 2.7. Влияние ветра на газообмен
- Глава 3. Дополнительные уравнения интегральной модели пожара для расчета теплового потока в ограждения и скорости выгорания горючих материалов
- 3.1. Приближенная оценка величины теплового потока в ограждения
- 3.2. Эмпирические методы расчета теплового потока в ограждения
- 3.3. Полуэмпирические методы расчета теплового потока в ограждения
- 3.4. Методы расчета скорости выгорания горючих материалов и скорости тепловыделения
- Глава 4. Математическая постановка и методы решения задачи о прогнозировании офп на основе интегральной математической модели пожара в помещении
- 4.1. Классификация интегральных моделей пожара
- 4.2. Интегральная математическая модель пожара для исследования динамики офп и ее численная реализация
- 4.3. Интегральная математическая модель начальной стадии пожара и расчет критической продолжительности пожара
- 4.3.1. Постановка задачи и ее решение
- 4.3.2. Расчет критических значений средних параметров состояния среды в помещении
- 4.3.3. Расчет коэффициента теплопоглощения (коэффициента
- Глава 5. Зонная математическая модель пожара в помещении
- 5.1. Схема трехзонной модели пожара:
- Глава 6. Дифференциальные (полевые) математические модели пожара в помещении математическая модель расчета тепломассообмена при пожаре в помещении
- 6.1. Особенности и упрощения термогазодинамической картины пожара
- 6.2.Структура полевой модели расчета тепломассообмена
- Основные уравнения
- 6.3. Основные уравнения полевой модели
- 6.4. Уравнения для расчета процесса прогрева строительных конструкций
- 6.5. Расчет турбулентного тепломассообмена
- 6.5.6. Уравнения (6.17)-(6.23) позволяют определить коэффициенты турбулентной вязкости, теплопроводности и диффузии, входящие в уравнения полевой модели (6.2)-(6.6).
- 6.6. Моделирование радиационного теплообмена
- 6.7. Расчет процесса выгорания горючей нагрузки
- 6.8. Моделирование горения
- 6.9. Условия однозначности
- 6.10. Моделирование действий систем пожаротушения
- 6.11. Моделирование действий систем механической вентиляции и дымоудаления
- 6.12. Метод численного решения дифференциальных уравнений
- Заключение
- Литература
- 129366, Москва, ул. Б. Галушкина, 4