Глава 5. Зонная математическая модель пожара в помещении
Зонные математические модели в основном используются для исследования динамики опасных факторов пожара в начальной стадии пожара. В начальной стадии распределение параметров состояния газовой среды по объему Помещения характеризуется большой неоднородностью (неравномерностью). В этот период (отрезок) времени пространство внутри помещения можно условно поделить на ряд характерных зон с существенно различающимися температурами и составами газовых сред. Границы этих зон по мере развития пожара не остаются неизменными и неподвижными. В течение времени геометрическая конфигурация зон меняется и сглаживается контрастное различие параметров состояния газа в этих зонах. В принципе, пространство внутри помещения можно разбить на любое число зон. В этой главе рассмотрим простейшую зонную модель пожара, которая применима при условиях, когда размеры очага горения значительно меньше размеров помещения.
Процесс развития пожара можно представить следующим образом. После воспламенения горючих веществ образующиеся газообразные продукты устремляются вверх, образуя над очагом горения конвективную струю. Достигнув потолка помещения, эта струя растекается, образуя припотолочный слой задымленного газа. В течение времени толщина этого слоя увеличивается.
В соответствии с вышесказанным в объеме помещения можно выделить три характерные зоны: конвективную колонку над очагом пожара, припотолочный слой нагретого газа и воздушную зону с практически неизменными параметрами состояния, равными своим начальным значениям. Математическая модель пожара, базирующаяся на разбиении пространства на характерные области, получила название
трехзонной модели. Схема этой модели показана на рис. 5.1. На этой схеме использованы следующие обозначения: ук - координата нижней границы припотолочного слоя, отсчитываемая от поверхности горения; удв -высота дверного проема; dэ - эквивалентный диаметр очага горения; 2h -высота помещения; GK - поток газа, поступающего в припотолочный слой из конвективной колонки кг•с-1 ; Gв – поток воздуха, поступающий в колонку из зоны III, кг•с-1 Gг – поток вытесняемого газа из помещения, кг•с-1 ; - скорость выгорания, кг•с-1; δ – расстояние от пола до поверхности горения, м.
В дальнейшем ограничимся рассмотрением первой фазы начальной стадии пожара. Под понятием "первая фаза начальной стадии пожара" подразумевается отрезок времени, в течение которого нижняя граница припотолочного слоя, непрерывно опускаясь, достигает верхнего края дверного проема. При первой фазе начальной стадии пожара нагретые газы лишь накапливаются в припотолочной зоне.
При второй фазе нижняя граница II зоны расположена ниже верхнего края дверного проема. С наступлением второй фазы начинается процесс истечения нагретых газов из помещения через дверной проем. До наступления этой фазы имеет место лишь вытеснение (через дверной проем) холодного воздуха из III зоны.
- Глава 1. Интегральная математическая модель пожара в помещении................14
- Глава 6. Дифференциальные (полевые) математические модели пожара в помещении..................................................................................................................88
- Введение. Общие сведения о методах прогнозирования опасных факторов пожара в помещении
- Глава 1. Интегральная математическая модель пожара в помещении
- Исходные положения и основные понятия интегрального метода термодинамического анализа пожара
- 1.2. Дифференциальные уравнения пожара
- Глава 2. Дополнительные уравнения интегральной математической модели пожара для расчета расходов уходящих газов и поступающего через проемы воздуха
- 2.1. Исходные положения
- 2.2. Распределение давлений по высоте помещения
- 2.3. Плоскость равных давлений и режимы работы проема
- 2.4. Распределение перепадов давлений по высоте помещения
- 2.5. Формулы для расчета расхода газа, выбрасываемого через прямоугольный проем
- 2.6. Формулы для расчета расхода воздуха, поступающего через прямоугольный проем
- 2.7. Влияние ветра на газообмен
- Глава 3. Дополнительные уравнения интегральной модели пожара для расчета теплового потока в ограждения и скорости выгорания горючих материалов
- 3.1. Приближенная оценка величины теплового потока в ограждения
- 3.2. Эмпирические методы расчета теплового потока в ограждения
- 3.3. Полуэмпирические методы расчета теплового потока в ограждения
- 3.4. Методы расчета скорости выгорания горючих материалов и скорости тепловыделения
- Глава 4. Математическая постановка и методы решения задачи о прогнозировании офп на основе интегральной математической модели пожара в помещении
- 4.1. Классификация интегральных моделей пожара
- 4.2. Интегральная математическая модель пожара для исследования динамики офп и ее численная реализация
- 4.3. Интегральная математическая модель начальной стадии пожара и расчет критической продолжительности пожара
- 4.3.1. Постановка задачи и ее решение
- 4.3.2. Расчет критических значений средних параметров состояния среды в помещении
- 4.3.3. Расчет коэффициента теплопоглощения (коэффициента
- Глава 5. Зонная математическая модель пожара в помещении
- 5.1. Схема трехзонной модели пожара:
- Глава 6. Дифференциальные (полевые) математические модели пожара в помещении математическая модель расчета тепломассообмена при пожаре в помещении
- 6.1. Особенности и упрощения термогазодинамической картины пожара
- 6.2.Структура полевой модели расчета тепломассообмена
- Основные уравнения
- 6.3. Основные уравнения полевой модели
- 6.4. Уравнения для расчета процесса прогрева строительных конструкций
- 6.5. Расчет турбулентного тепломассообмена
- 6.5.6. Уравнения (6.17)-(6.23) позволяют определить коэффициенты турбулентной вязкости, теплопроводности и диффузии, входящие в уравнения полевой модели (6.2)-(6.6).
- 6.6. Моделирование радиационного теплообмена
- 6.7. Расчет процесса выгорания горючей нагрузки
- 6.8. Моделирование горения
- 6.9. Условия однозначности
- 6.10. Моделирование действий систем пожаротушения
- 6.11. Моделирование действий систем механической вентиляции и дымоудаления
- 6.12. Метод численного решения дифференциальных уравнений
- Заключение
- Литература
- 129366, Москва, ул. Б. Галушкина, 4