logo
ПОФП учебник Кошмаров справленный

6.1. Особенности и упрощения термогазодинамической картины пожара

6.1.1. Пожар в помещении протекает в сложных термогазодинамических условиях при одновременном воздействии ряда возмущающих его течение факторов:

- неизотермичность (отличие температур твердых поверхностей несущих и ограждающих конструкций и газовых потоков);

- сжимаемость (плотность газа не является постоянной величиной);

- градиенты давления;

- вдув на стенке (поступление в помещение продуктов внутренней деструктуризации материала твердых конструкций, испарение воды, содержащейся внутри материала конструкций, тепломассообменная защита конструкций);

- излучение;

- протекание химических реакций;

- двухфазность (одновременное сосуществование нескольких фаз – газ +твердые частицы, газ+жидкость, газ+твердые частицы+жидкость);

- шероховатость поверхностей несущих и ограждающих конструкций;

- кривизна поверхности несущих и ограждающих конструкций;

- турбулентность;

- скачки уплотнения;

- переход ламинарного режима течения в турбулентный.

Действие вышеуказанных факторов приводит к существенному отличию закономерностей тепломассообмена от хорошо изученных «стандартных» условий теплообмена [12]: изотермическое безградиентное течение несжимаемого газа вдоль поверхности непроницаемой пластины. Поэтому методы расчета тепломассообмена при пожаре должны учитывать влияние термогазодинамических условий его развития.

6.1.2. К числу основных особенностей тепломассообменных процессов при пожаре относятся следующие [3]:

- наибольшая разница давлений в разных зонах помещения не превышает десятых долей процента от величины среднего давления в помещении при отсутствии взрывов с образующимися ударными волнами;

- скорости потоков газов малы по сравнению со скоростью звука (при отсутствии детонационного горения и ударных волн);

- скорости диффузии газов достаточно велики, т.е. необходимо учитывать процессы термодиффузии и турбулентной диффузии.

1.1.3. При разработке полевой математической модели расчета тепломассообмена при пожаре в помещении принимаются следующие допущения и упрощения реальной термогазодинамической картины процесса [3]:

- локальное термодинамическое и химическое равновесие существует во всем объеме помещения, что позволяет использовать равновесное уравнение состояния;

- газовая среда является смесью идеальных газов, что дает удовлетворительное приближение в диапазонах температур и давлений, характерных при пожаре;

- химическая реакция горения является одноступенчатой и необратимой;

- диссоциация и ионизация среды при высоких температурах не учитывается;

- локальные скорости и температуры компонентов газовой смеси и твердых (или жидких) частиц одинаковы между собой в каждой точке пространства (односкоростная и однотемпературная модель), т.е. межфазным взаимодействием (температурным скачком и «скольжением» фаз друг относительно друга) пренебрегаем.

При разработке полевой математической модели расчета тепломассообмена при пожаре в помещении пренебрегаем:

- оагуляцией и дроблением частиц дыма;

- взаимным влиянием турбулентности и излучения;

- обратным влиянием горения на скорость выгорания горючего материала, т.е. скорость выгорания горючей нагрузки рассчитывается на основе полуэмпирических зависимостей без учета текущих параметров газовой среды;

- термо- и бародиффузией.

1.1.4. Газовая среда рассматривается как вязкий теплопроводный сжимаемый идеальный газ. Влияние твердых частиц дыма учитывается при определении характеристик радиационного теплопереноса внутри помещения.