logo
Обыкновенные-диф

1.9. Дифференциальные уравнения в полных дифференциалах

Определение. Если в уравнении

(9.1)

левая часть есть полный дифференциал некоторой функции , то оно называется уравнением в полных дифференциалах. Это уравнение можно переписать в виде , следовательно, его общий интеграл есть .

Например, уравнение есть уравнение в полных дифференциалах, так как его можно переписать в виде . А значит, общий интеграл задаётся равенством .

Теорема. Предположим, что функции M и N определены и непрерывны в некоторой односвязной области D и имеют в ней непрерывные частные производные соответственно по y и по x. Тогда, для того чтобы уравнение (9.1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось тождество

. (9.2)

Доказательство. Доказательство необходимости этого условия очевидно. Поэтому докажем достаточность условия (9.2).

Покажем, что может быть найдена такая функция , что и .

Действительно, поскольку , то

, (9.3)

где – произвольная дифференцируемая функция.

Продифференцируем равенство (9.3) по y:

.

Но , следовательно,

.

Положим , тогда .

Итак, построена функция

,

для которой

, а .

Пример. Найти общий интеграл уравнения:

.

Решение. В данном случае

Тогда

.

Следовательно, заданное дифференциальное уравнение 1-го порядка является уравнением в полных дифференциалах, т.е. существует такая функция , частные производные которой соответственно по x и y равны и :

.

Проинтегрируем первое из двух соотношений по x:

,

.

Теперь продифференцируем по y и приравняем полученное в результате выражение частной производной :

.

Отсюда и . Следовательно, общим интегралом заданного уравнения является:

.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4