4. Системы обыкновенных дифференциальных уравнений
Линейное однородное дифференциальное уравнение с постоянными коэффициентами имеет вид:
, (3.3)
где – постоянные вещественные числа. Это уравнение имеет фундаментальную систему решений , определённую при всех x и состоящую из степенных, показательных и тригонометрических функций. Соответствующее этой системе функций общее решение
определено в области , , , …, , т.е. во всём пространстве .
Построение фундаментальной системы решений ЛОДУ проводится методом Эйлера, который состоит в том, что частное решение ЛОДУ ищется в виде , где – некоторое число, подлежащее определению. Подставляя эту функцию в уравнение (3.3) и сокращая на , получим характеристическое уравнение:
. (3.4)
Его корни называются характеристическими числами уравнения (3.3). Рассмотрим возможные ситуации, возникающие при решении характеристического уравнения.
Все корни характеристического уравнения (3.4) различны и вещественны. Обозначим их . Тогда фундаментальную систему решений составляют функции: , а общее решение имеет вид:
.
Все корни характеристического уравнения (3.4) различны, но среди них имеются комплексные. Пусть – комплексный корень характеристического уравнения. Тогда тоже будет корнем этого уравнения. Этой паре корней соответствует пара линейно независимых частных решений:
,
.
Записав линейно независимые частные решения, соответствующие другим сопряжённым парам комплексных корней и всем вещественным корням, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (3.3).
Среди корней характеристического уравнения имеются кратные. Пусть – вещественный k-кратный корень. Тогда ему соответствует k линейно независимых частных решений вида , а в формуле общего решения – выражение вида .
Если – комплексный корень характеристического уравнения кратности k, то ему и сопряжённому с ним корню той же кратности соответствуют 2k линейно независимых частных решений вида:
В формуле общего решения этим корням соответствует выражение вида:
.
Записав линейно независимые частные решения указанного выше вида, соответствующие всем простым и кратным вещественным корням, а также сопряжённым парам простых и кратных комплексных корней, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (3.3).
Yandex.RTB R-A-252273-3- Оглавление
- 1.1. Обыкновенные дифференциальные уравнения. Основные понятия
- 1.2. Обыкновенные дифференциальные уравнения 1-го порядка
- 1.3. Дифференциальные уравнения 1-го порядка с разделяющимися переменными
- 1.4. Однородные дифференциальные уравнения 1-го порядка
- 1.5. Дифференциальные уравнения, приводящиеся к однородным
- 1.6. Обобщенное однородное уравнение
- 1.7. Линейные дифференциальные уравнения 1-го порядка
- 1.8. Уравнение Бернулли
- 1.9. Дифференциальные уравнения в полных дифференциалах
- 1.10. Интегрирующий множитель
- 2. Дифференциальные уравнения 2-го порядка
- 2.1. Методы понижения порядка уравнения
- 2.2. Линейное дифференциальное уравнение 2-го порядка
- 2.3. Определитель Вронского
- 2.4. Структура общего решения лоду 2-го порядка
- 2.5. Лоду 2-го порядка с постоянными коэффициентами
- 2.6. Структура общего решения лнду 2-го порядка
- 2.7. Решение лнду 2-го порядка с постоянными коэффициентами со специальной правой частью
- 2.8. Метод вариации произвольных постоянных (метод Лагранжа)
- 3. Линейные уравнения высших порядков
- 3.1. Однородное уравнение
- 3.2. Линейное однородное дифференциальное уравнение с постоянными коэффициентами
- 4. Системы обыкновенных дифференциальных уравнений
- 4.1. Нормальные системы
- 4.2. Метод исключения
- 4.3. Линейные однородные системы дифференциальных уравнений (лос ду)
- 4.4. Лос ду с постоянными коэффициентами
- 4.5. Линейные неоднородные системы дифференциальных уравнений (лнс ду)
- 4.6. Метод вариации произвольных постоянных