Критические точки распределения Кочрена (продолжение)
(k—число степеней свободы, l—количество выборок)
Уровень значимости =0,05 | |||||||
| k |
|
|
|
|
|
|
l | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 0,9985 | 0,975 | 0,9392 | 0,9057 | 0,8772 | 0,8534 | 0,8332 |
3 | 0,9669 | 0,8709 | 0,7977 | 0,7457 | 0,7071 | 0,6771 | 0,6530 |
4 | 0,9065 | 0,7679 | 0,6841 | 0,6287 | 0,5895 | 0,0,5598 | 0,5365 |
5 | 0,8412 | 0,6338 | 0,5981 | 0,544 | 0,5063 | 4783 | 0,4564 |
6 | 0,7808 | 0,6161 | 0,5321 | 0,4803 | 0,4447 | 0,4184 | 0,3980 |
7 | 0,7271 | 0,5612 | 0,4800 | 0,4307 | 0,3974 | 0,3726 | 0,3535 |
8 | 0,6798 | 0,5157 | 0,4377 | 0,391 | 0,3595 | 0,3362 | 0,3185 |
9 | 0,6385 | 0,4775 | 0,4027 | 0,3584 | 0,3286 | 0,3067 | 0,2901 |
10 | 0,6020 | 0,4450 | 0,3733 | 0,3311 | 0,3029 | 0,2823 | 0,2666 |
12 | 0,541 | 0,3924 | 0,3624 | 0,288 | 0,2624 | 0,2439 | 0,2299 |
15 | 0,4709 | 0,3346 | 0,2758 | 0,2419 | 0,2195 | 0,2034 | 0,1911 |
20 | 0,3894 | 0,2705 | 0,2205 | 0,1921 | 0,1735 | 0,1602 | 0,1501 |
24 | 0,3434 | 0,2354 | 0,1907 | 0,1656 | 0,1493 | 0,1374 | 0,1286 |
30 | 0,2929 | 0,1980 | 0,1593 | 0,1377 | 0,1237 | 0,1137 | 0,1061 |
40 | 0,2370 | 0,1576 | 0,1259 | 0,1082 | 0,0968 | 0,0887 | 0,0827 |
60 | 0,1737 | 0,1131 | 0,0895 | 0,0765 | 0,0682 | 0,0623 | 0,0583 |
120 | 0,0998 | 0,0632 | 0,0495 | 0,0419 | 0,0371 | 0,0337 | 0,0312 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Уровень значимости =0,05 | |||||||
| k |
|
|
|
|
|
|
l | 8 | 9 | 10 | 16 | 36 | 144 | |
2 | 0,8159 | 0,8010 | 0,7880 | 0,7341 | 0,6602 | 0,5813 | 0,5000 |
3 | 0,6333 | 0,6167 | 0,6025 | 0,5466 | 0,4748 | 0,4031 | 0,3333 |
4 | 0,5175 | 0,5017 | 0,4884 | 0,4366 | 0,3720 | 0,3093 | 0,2500 |
5 | 0,4387 | 0,4241 | 0,4118 | 0,3645 | 0,3066 | 0,2013 | 0,2000 |
6 | 0,3817 | 0,3682 | 0,3568 | 0,3135 | 0,2612 | 0,2119 | 0,1667 |
7 | 0,3384 | 0,3259 | 0,3154 | 0,2756 | 0,2278 | 0,1833 | 0,1429 |
8 | 0,3043 | 0,2926 | 0,2829 | 0,2462 | 0,2022 | 0,1616 | 0,1250 |
9 | 0,2768 | 0,2659 | 0,2568 | 0,2226 | 0,1820 | 0,1446 | 0,1111 |
10 | 0,2541 | 0,2439 | 0,2353 | 0,2032 | 0,1655 | 0,1308 | 0,1000 |
12 | 0,2187 | 0,2098 | 0,202 | 0,1737 | 0,1403 | 0,1100 | 0,0833 |
15 | 0,1815 | 0,1736 | 0,1671 | 0,1429 | 0,1144 | 0,0889 | 0,0667 |
20 | 0,1422 | 0,1357 | 0,1303 | 0,1108 | 0,0879 | 0,0675 | 0,0500 |
24 | 0,1216 | 0,1160 | 0,1113 | 0,0942 | 0,0743 | 0,0567 | 0,0417 |
30 | 0,1002 | 0,0958 | 0,0921 | 0,0771 | 0,0604 | 0,0457 | 0,0333 |
40 | 0,0780 | 0,0745 | 0,0713 | 0,0595 | 0,0462 | 0,0347 | 0,0250 |
60 | 0,0552 | 0,052 | 0,0497 | 0,0411 | 0,0316 | 0,0234 | 0,0167 |
120 | 0,0292 | 0,0279 | 0,0266 | 0,0218 | 0,0165 | 0,0120 | 0,0083 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
- Основные понятия, используемые в математической обработке психологических данных Признаки и переменные
- Шкалы измерения
- Математическая статистика. Первоначальные понятия математической статистики
- Измерение значений психологических признаков
- Разные виды случайных выборок
- Статистическое распределение выборки.
- Типы выборки
- Эмпирическая функция распределения.
- Гистограмма
- Статистические оценки параметров распределения.
- Групповая и общая средние
- Групповая, внутри групповая, межгрупповая и общая дисперсии
- Интервальные оценки.
- Доверительные интервалы для оценки среднеквадратического отклонения нормального распределения
- Характеристики вариационного ряда
- Обычные, начальные и центральные эмпирические моменты
- Эмпирические и выравнивающие (теоретические) частоты
- Асимметрия и эксцесс
- Метод моментов.
- Метод наибольшего правдоподобия.
- Элементы теории линейной корреляции.
- Статистическая проверка гипотез о виде и о параметрах распределений.
- Статистический критерий проверки нулевой гипотезы
- Критерий Пирсона проверки гипотезы о нормальном распределении генеральной совокупности
- Сравнение двух дисперсий нормальных генеральных совокупностей
- Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности
- Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны (независимые выборки)
- Сравнение двух средних произвольно распределенных генеральных совокупностей (большие независимые выборки)
- Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых неизвестны и одинаковы (малые независимые выборки)
- Сравнение выборочной средней с гипотетической генеральной средней нормальной совокупности
- Связь между двусторонней критической областью и доверительным интервалом
- Определение минимального объема выборки при сравнении выборочной и гипотетической генеральной средних
- Сравнение двух средних нормальных генеральных совокупностей с неизвестными дисперсиями (зависимые выборки)
- Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- Сравнение двух вероятностей биномиальных распределений
- Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта
- Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена
- Проверка гипотезы о значимости выборочного коэффициента корреляции
- Выборочный коэффициент ранговой корреляции Спирмена и проверка гипотезы о его значимости
- Выборочный коэффициент ранговой корреляции Кендалла и проверка гипотезы о его значимости
- Критерий Вилкоксона и проверка гипотезы об однородности двух выборок
- Однофакторный дисперсионный анализ Сравнение нескольких средних. Понятие о дисперсионном анализе
- Общая факторная и остаточная суммы квадратов отклонений
- Общая, факторная и остаточная дисперсии
- Сравнение нескольких средних методом дисперсионного анализа
- Критические точки распределения
- Критические точки распределения Стьюдента
- Критические точки распределения f Фишера — Снедекора
- Критические точки распределения Кочрена
- Критические точки распределения Кочрена (продолжение)
- Критические точки критерия Вилкоксона
- Критические точки критерия Вилкоксона (продолжение)
- Критические точки критерия Вилкоксона (продолжение)